Journal of Materials Science

, Volume 9, Issue 9, pp 1467–1477 | Cite as

The deformation behaviour of a dispersion strengthened superplastic zinc alloy

  • J. D. Lee
  • P. Niessen


The deformation behaviour of a new dispersion strengthened superplastic zinc alloy was investigated. A significant long range internal stress was observed at all strain-rates. The activation volume of deformation decreased very rapidly with a decrease in the true effective stress. The maximum strain-rate sensitivity corresponds to a region of change from this high stress dependence of the activation volume to a much lower stress dependence. The observation of a metallographic halo effect shows that apart from dislocation movement, diffusive creep plays a role during superplastic deformation. It is stipulated that both these processes aid boundary sliding which accounts for the largest part of the strain.


Polymer Zinc Long Range High Stress Effective Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Lee andP. Niessen,Met. Trans. 4 (1973) 949.Google Scholar
  2. 2.
    J. E. Hilliard,Metal Progress, May (1964) 99.Google Scholar
  3. 3.
    G. B. Gibbs,Phil. Mag. 13 (1966) 317.Google Scholar
  4. 4.
    Idem, Phys. Stat. Sol. 5 (1964) 693.Google Scholar
  5. 5.
    F. Guiu andP. L. Pratt,Phys. Stat. Sol. 6 (1964) 111.Google Scholar
  6. 6.
    N. Balasubramanian andJ. C. M. Li,J. Mater. Sci. 5 (1970) 434.Google Scholar
  7. 7.
    W. A. Rachinger,J. Inst. Metals 81 (1952–53) 33.Google Scholar
  8. 8.
    A. Karim, D. L. Holt andW. A. Backofen,Trans. Met. Soc. AIME 245 (1969) 1131.Google Scholar
  9. 9.
    K. T. Aust, R. E. Hanneman, P. Niessen andJ. Westbrook,Acta Met. 16 (1968) 291.Google Scholar
  10. 10.
    A. van Den Beukel,Phys. Stat. Sol. 23 (1967) 165.Google Scholar
  11. 11.
    F. R. N. Nabarro, Proceedings of the Conference on Strength of Solids, (Phys. Soc. of London, Cambridge, 1948) p. 75.Google Scholar
  12. 12.
    C. Herring,J. Appl. Phys. 21 (1950) 437.Google Scholar
  13. 13.
    R. L. Coble,ibid 34 (1963) 1679.Google Scholar
  14. 14.
    R. B. Jones,Nature 207 (1965) 70.Google Scholar
  15. 15.
    E. S. Wadja,Acta Met. 2 (1954) 184.Google Scholar
  16. 16.
    J. Askill, “Tracer Diffusion Data for Metals, Alloys and Simple Oxides” (IFI/Plenum, New York, 1970).Google Scholar
  17. 17.
    R. Raj andM. F. Ashby,Met. Trans. 2 (1971) 1113.Google Scholar
  18. 18.
    P. Chaudhari,Met. Trans. 5 (1974) 1692.Google Scholar
  19. 19.
    J. P. Hirth,Met. Trans. 3 (1972) 3047.Google Scholar
  20. 20.
    P. Chaudhari andS. Mader, Proceedings of the 7th International Symposium on High Speed Testing: The Rheology of Solids, Boston (1969);J. Appl. Polymer Sci. 12 (1969).Google Scholar

Copyright information

© Chapman and Hall Ltd 1974

Authors and Affiliations

  • J. D. Lee
    • 1
  • P. Niessen
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations