Skip to main content
Log in

Activated slip systems during yielding of α-β brass two-phase bicrystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

α-β brass two-phase bicrystals, consisting of fcc (α) single crystals and bee (β) single crystals, which were made by the solid state diffusion couple technique, were tensile-tested at room temperature in order to clarify the role of phase-interface on the deformation. The two-phase bicrystals had small concentration gradients in theα- andβ-phases and satisfied the Kurjumov-Sach's orientation relationships i.e. {1 1 1} α ∥ {1 1 0} β and [1 1 0] α ∥ [1 1 1] β at the interface. The slip traces observed in bicrystals deformed to about 3% plastic strain showed a striking contrast between theα- andβ-phases; the slip traces in theα-phase were clear and straight, while those in theβ-phase were fine and wavy. The slip systems in the bicrystals were attributed to those observed inα andβ single crystals, and were explained by a plastic strain incompatibility mechanism. The slip systems, originating at the interface or propagating from another phase, were observed on matching planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Livingston andB. Chalmers,Acta Met. 5 (1957) 322.

    Google Scholar 

  2. J. J. Hauser andB. Chalmers,ibid. 9 (1961) 802.

    Google Scholar 

  3. O. Izumi andT. Takasugi,Z. Metallkde. 65 (1974) 542.

    Google Scholar 

  4. R. E. Hook andJ. P. Hirth,Acta Met. 15 (1967) 535.

    Google Scholar 

  5. Idem, ibid. 15 (1967) 1099.

    Google Scholar 

  6. Y. D. Chaung andH. Margolin,Met. Trans. 4 (1973) 1905.

    Google Scholar 

  7. T. D. Lee andH. Margolin,Met. Trans. A 8A (1977) 145.

    Google Scholar 

  8. Idem ibid. 8A (1977) 157.

    Google Scholar 

  9. J. D. Mote andJ. E. Dorir,Trans. AIME 218 (1960) 491.

    Google Scholar 

  10. J. J. Gilman;ibid. 212 (1958) 783.

    Google Scholar 

  11. A. K. Hingwe andK. N. Subramanian,J. Crystal Growth 21 (1974) 287.

    Google Scholar 

  12. Idem, J. Mater. Sci. 10 (1975) 183.

    Google Scholar 

  13. W. R. Patterson andI. G. Greenfield,Acta Met. 19 (1971) 123.

    Google Scholar 

  14. Y. G. Nakagawa andI. G. Greenfield,ibid. 21 (1973) 335.

    Google Scholar 

  15. Idem, ibid. 21 (1973) 367.

    Google Scholar 

  16. L. C. D. Jonghe andI. G. Greefield,ibid. 17 (1969) 1411.

    Google Scholar 

  17. T. E. Mitchel andP. R. Thornton,Phil. Mag. 8 (1963) 1127.

    Google Scholar 

  18. G. Kurjumov andG. Sachs,Z. Physik. 64 (1930) 325.

    Google Scholar 

  19. Z. Nishiyama,Sci. Rep. Tohoku Univ. 23 (1974/5) 637.

    Google Scholar 

  20. O. T. Marzke,Trans. AIME 104 (1933) 64.

    Google Scholar 

  21. H. Hu andC. S. Smith,Acta Met. 4 (1956) 638.

    Google Scholar 

  22. A. B. Greninger,Trans. AIME 124 (1937) 379.

    Google Scholar 

  23. S. Woo, C. S. Barrett andR. F. Mehl, “Metals Technology” (AIME, 1944) p. 1694.

  24. K. Ito andH. Abe,Trans. Japan Inst. Metals. 14 (1973) 168.

    Google Scholar 

  25. M. Yamamoto, T. Sakuma andT. Nishizawa,J. Inst. Japan 38 (1974) 637.

    Google Scholar 

  26. P. H. Pumphrey,Scripta Met. 6 (1972) 107.

    Google Scholar 

  27. T. Yamagata, H. Yoshida andY. Fukuzawa,Trans. Japan Inst. Metals 17 (1976) 393.

    Google Scholar 

  28. S. Hanada, M. Mohri andO. Izumi,ibid. 16 (1975) 453.

    Google Scholar 

  29. M. Yamaguchi andY. Umakoshi,Acta Met. 24 (1976) 1061.

    Google Scholar 

  30. H. M. Clark,Phil. Mag. 15 (1967) 853.

    Google Scholar 

  31. P. R. Thornton andT. E. Mitchell,Phil. Mag. 6 (1961) 361.

    Google Scholar 

  32. R. M. Maddin, C. H. Mathewson andW. R. Hibbard,Met. Trans. 185 (1949) 527.

    Google Scholar 

  33. A. L. Titcheuer andW. G. Ferguson,J. Inst. Met. 99 (1971) 345.

    Google Scholar 

  34. W. Auneodo andM. Ahlers,Acta Met. 22 (1974) 1475.

    Google Scholar 

  35. H. Pops andT. B. Massalshi,Trans. AIME 230 (1964) 1662.

    Google Scholar 

  36. A. E. Vidoz andL. M. Brown,Phil. Mag. 7 (1962) 1167.

    Google Scholar 

  37. L. E. Beck andC. S. Smith,J. Metals,4 (1952) 1079.

    Google Scholar 

  38. T. Schober andR. W. Balluffi,Phil. Mag. 23 (1971) 165.

    Google Scholar 

  39. P. Horton, J. M. Stitcock andG. R. Kegg,Phys. Stat. Sol. (a) 26 (1974) 215.

    Google Scholar 

  40. H. Gleiter, E. Hornbogen andG. Bäro,Acta Met. 16 (1968) 1053.

    Google Scholar 

  41. J. C. M. Li,Trans. AIME 227 (1963) 239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Mechanical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takasugi, T., Izumi, O. & Fat-Halla, N. Activated slip systems during yielding of α-β brass two-phase bicrystals. J Mater Sci 13, 2013–2021 (1978). https://doi.org/10.1007/BF00552909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552909

Keywords

Navigation