Skip to main content
Log in

Oxidation kinetics of fayalite and growth of hematite whiskers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation of fayalite to hematite and silica by oxygen and oxygen-nitrogen or oxygen-water vapour mixtures has been studied by TGA, SEM and X-ray diffraction. In the temperature range 690 to 950° C, the isotherms of oxidation are pseudo-parabolic. The Arrhenius plot shows a break near 840° C, related to the quartz-cristobalite transformation, the activation energy being about 230 kJ mol−1. The first stage of oxidation leads to the formation of a covering layer constituted of silica plus iron oxide (mainly hematite). Solid state diffusion of oxygen then takes place through this layer, which progressively evolves with the crystallization of silica and a relaxation of stress due to fracture. After the fracture of the covering layer, whiskers of hematite grow, usually on a silica substrate, and align themselves along linear defects. Under specific conditions, their growth is periodic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. G. Baldwin,J. Iron and Steel Inst. 177 (1954) 312.

    Google Scholar 

  2. M. Jon andM. Rouby,Chimie Anal. 49 (1967) 73.

    Google Scholar 

  3. A. Goetz andP. Ilie,Rev. Mineral. 20 (1969) 216.

    Google Scholar 

  4. S. Isakova andT. Vasilev,Rudodobiv. Met. 22 (1967) 558.

    Google Scholar 

  5. I. Uchiyama andT. Saito, Proc. Mem. Lect. Meet. Anniv. Found. Nat. Res. Inst. Metals 10th, Tokyo (1966) p. 122.

  6. Y. Mityunin et al., Mater. Mineral. Kol'sk Poluostrova 6 (1968) 292.

    Google Scholar 

  7. I. Gaballah, F. Jeannot, C. Gleitzer andL. C. Dufour,Mem. Sci. Rev. Met. 72 (1975) 735.

    Google Scholar 

  8. S. Minowa, M. Yamada andY. Torii,Tetsu to Hagana 54 (1968) 1203.

    Google Scholar 

  9. T. Yanagihara andT. Kobayashi,Nippon Kinzoku Gakkai Shi 33 (1969) 314.

    Google Scholar 

  10. W. Katsuya andY. Chikao,Hokkaido Daigaku Kagukubus Kenkyu Hokoku 48 (1968) 39.

    Google Scholar 

  11. D. Wones andM. Gilbert,Carnegie Inst. Washington, Yearb. 66 (1968) 402.

    Google Scholar 

  12. G. Mateev, A. S. Agarkov andA. K. Zhuravlev,Silikattechnik 23 (1972) 369.

    Google Scholar 

  13. V. Cirilli,Gazz. Chim. Italiana 76 (1946) 331.

    Google Scholar 

  14. P. Divanach, D.E.S. Nancy (1964).

  15. J. Ory, D.E.S., Nancy (1966).

  16. H. G. Sockel, “Defects and Transport in Oxides”, edited by M. Seltzer and R. Jaffee (Plenum Press, New York and London, 1975) p. 341.

    Google Scholar 

  17. P. Kofstadt, “Non stoichiometry, diffusion and electrical conductivity in binary metal oxides” (Wiley Interscience, New York, 1972).

    Google Scholar 

  18. R. Doremus, 6th International Symposium on Reactivity of Solids (Wiley Interscience, New York, 1968) p. 667.

    Google Scholar 

  19. E. Givargizov,J. Cryst. Growth 20 (1973) 217.

    Google Scholar 

  20. Idem, Dokl. Akad. Nauk SSR 222 (1975) 339.

    Google Scholar 

  21. E. A. Gulbransen andT. P. Copan,Discuss. Faraday Soc. 28 (1959) 229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaballah, I., Raghy, S.E. & Gleitzer, C. Oxidation kinetics of fayalite and growth of hematite whiskers. J Mater Sci 13, 1971–1976 (1978). https://doi.org/10.1007/BF00552904

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552904

Keywords

Navigation