Journal of Materials Science

, Volume 13, Issue 9, pp 1868–1876 | Cite as

The thermodynamics of A15 compound formation by diffusion from ternary bronzes

  • D. Dew-Hughes
  • T. S. Luhman


The formation of highTc Nb3Al, Nb3Ga, Nb3Ge and V3 (Ga, Si) has been attempted by solid state diffusion from ternary bronzes. None of the desired compounds were formed. The results are explained in terms of the thermodynamics of compound formation by solid state diffusion. Diffusion follows two-phase tie-lines; only those phases which lie on tie-line routes, and which are the most stable as defined by the stability index, are able to form. The addition of the third element to the bronze in general has little significant effect. There is no evidence to indicate that highTc Nb3Al, Nb3Ga or Nb3Ge can be produced by solid state reaction.


Polymer Solid State Solid State Reaction Stability Index State Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. R. Kaufmann andJ. J. Pickett,Bull. Amer. Phys. Soc. 15 (1970) 838.Google Scholar
  2. 2.
    Idem, J. Appl. Phys. 42 (1971) 581.Google Scholar
  3. 3.
    K. Tachikawa, Proc. ICEC 3 (Berlin, 1970), Iliffe (London, 1971) p. 339.Google Scholar
  4. 4.
    M. Suenaga andW. B. Sampson,Appl. Phys. Lett. 18 (1971) 584.Google Scholar
  5. 5.
    Idem M. Suenaga andW. B. Sampson, Applied Superconductivity Conference, IEEE Publication No. 72CH0682-5-TABSL, p. 481.Google Scholar
  6. 6.
    K. Tachikawa, R. J. Burt andK. T. Hartwig,J. Appl. Phys. 48 (1977) 3623.Google Scholar
  7. 7.
    T. S. Luhman, O. Horigami andD. DewHughes, Applied Polymer Symposium, No. 29, (1976) p. 61.Google Scholar
  8. 8.
    D. Dew-Hughes,Cryogenics 15 (1975) 435.Google Scholar
  9. 9.
    A. Müller,Z. Natur. 25A (1970) 1659.Google Scholar
  10. 10.
    Idem, ibid. 26A (1971) 1035.Google Scholar
  11. 11.
    M. Drys,J. Less Common Metals 44 (1976) 229.Google Scholar
  12. 12.
    E. S. Machlin, Private communication (1975).Google Scholar
  13. 13.
    E. S. Machlin andS. H. Wang,J. Phys. Chem. Solids 37 (1976) 555.Google Scholar
  14. 14.
    J. Muller, R. Flukiger, A. Junod, F. Heiniger andC. Susz, Proceedings LT13 Vol. 3, edited by K. D. Timmerhauset al. (Plenum Press, New York, 1974) p. 446.Google Scholar
  15. 15.
    G. R. Johnson andD. H. Douglass,J. Low Temp. Phys. 14 (1974) 565.Google Scholar
  16. 16.
    S. Geller,Acta Cryst. 9 (1956) 885.Google Scholar
  17. 17.
    O. Horigami, T. S. Luhman, C. S. Pande andM. Suenaga,Appl. Phys. Lett. 28 (1976) 738.Google Scholar
  18. 18.
    D. Dew-Hughes andM. Suenaga,J. Appl. Phys. 49 (1978) 357.Google Scholar
  19. 19.
    B. C. Deaton andD. E. Gordon, Proc. LT13, Vol. 3, edited by K. D. Timmerhouset al. (Plenum Press, New York, 1974) p. 475.Google Scholar
  20. 20.
    V. Zwicker, G. Müller, W. Böhm andV. Hofmann,J. Less Common Metals 43 (1975) 33.Google Scholar
  21. 21.
    T. S. Luhman (unpublished).Google Scholar
  22. 22.
    D. K. Deardorff, R. E. Siemans, P. A. Romans andR. A. McCuire,J. Less Common Metals 18 (1969) 11.Google Scholar
  23. 23.
    J. D. Livingston, Private communication (1977).Google Scholar
  24. 24.
    J. B. Clark andF. N. Rhines,Trans. ASM 51 (1959) 199.Google Scholar
  25. 25.
    G. V. Raynor,J. Less Common Metals 29 (1972) 333.Google Scholar
  26. 26.
    L. D. Hartsough,J. Phys. Chem. Solids 35 (1974) 1691.Google Scholar
  27. 27.
    R. H. Hopkins, G. W. Roland andM. R. Daniel,Met. Trans. 8A (1977) 91.Google Scholar
  28. 28.
    M. Suenaga, O. Horigami andT. S. Luhman,Appl. Phys. Lett. 25 (1974) 624.Google Scholar
  29. 29.
    E. M. Savitskii, Yu. V. Efimov, V. Ya. Markiv andO. I. Zvolinskii,Izv. Akad. Nauk. SSSR, Metallii, (1976) 199.Google Scholar
  30. 30.
    R. H. Hopkins, A. M. Stewart andM. R. Daniel,Met. Trans. 9A (1978) 215.Google Scholar
  31. 31.
    J. D. Livingston,J. Mater. Sci. 12 (1977) 1759.Google Scholar
  32. 32.
    C. R. Hunt andA. Raman,Z. Metallkde. 59 (1968) 701.Google Scholar
  33. 33.
    V. Ya. Markiv, Yu. V. Voroshilov, P. I. Kripyakevich, E. E. Cherkashin,Sov. Phys. Cryst. 9 (1964) 619.Google Scholar
  34. 34.
    E. M. Savitskii, E. Saur, Ch. J. Raub andYu. V. Efimov,Z. Metallkde. 68 (1977) 128.Google Scholar
  35. 35.
    C. E. Lundin andA. S. Yamamoto,Trans. AIME 236 (1966) 863.Google Scholar
  36. 36.
    S. Moehlecke, Ph. D. Thesis, Campinas, Brazil (1977).Google Scholar
  37. 37.
    P. Feschotte andE. L. Spitz,J. Less Common Metals 37 (1974) 233.Google Scholar
  38. 38.
    W. G. Moffatt, Binary Phase Diagrams Handbook, General Electric (Schenectady, New York, 1976).Google Scholar
  39. 39.
    F. A. Shunk, “Constitution of Binary Alloys”, 2nd supplement; (McGraw-Hill, New York, 1969) p. 203.Google Scholar
  40. 40.
    Idem, ibid. p. 370.Google Scholar
  41. 41.
    M. Hansen, “Constitution of Binary Alloys”, 2nd edition, (McGraw-Hill, New York, 1958) p. 1201.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • D. Dew-Hughes
    • 1
  • T. S. Luhman
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA

Personalised recommendations