Journal of Materials Science

, Volume 13, Issue 12, pp 2619–2626 | Cite as

High temperature creep of ultrafine-grained Fe-doped MgO polycrystals

  • J. Crampon
  • B. Escaig
Papers

Abstract

Creep deformation in ultrafine-grained (0.1 to 1μm) Fe-doped magnesia polycrystals is studied in compression, at temperatures of 700 to 1050° C, and constant loads of 50 to 140 MPa. The stress exponent observed to be nearly unity and the strong grain size sensitivity (ėd−2.85) suggest that diffusional creep mechanisms dominate the deformation. In the grain size range of the present study the grain boundary diffusion contribution is significantly more important than lattice diffusion. Magnesium is tentatively identified as the rate-controlling species along grain boundaries from an analysis of the diffusivities inferred from the present work and from other authors for Fe-doped magnesia.

Keywords

Polymer Grain Size Magnesia Size Range Boundary Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Vasilos, J. B. Mitchell andR. M. Spriggs,J. Amer. Ceram. Soc. 47 (1964) 203.Google Scholar
  2. 2.
    E. M. Passemore, R. H. Duff andT. Vasilos,ibid. 49 (1966) 594.Google Scholar
  3. 3.
    H. Tagai andT. Zisner,ibid. 51 (1968) 303.Google Scholar
  4. 4.
    Idem, ibid. 51 (1968) 310.Google Scholar
  5. 5.
    J. H. Hensler andG. V. Cullen,ibid. 51 (1968) 557.Google Scholar
  6. 6.
    G. R. Terwilliger, H. K. Bowen andR. S. Gordon,ibid. 53 (1970) 241.Google Scholar
  7. 7.
    T. G. Langdon andJ. A. Pask,Acta. Met. 18 (1970) 505.Google Scholar
  8. 8.
    R. S. Gordon andG. R. Terwilliger,J. Amer. Ceram. Soc. 55 (1972) 450.Google Scholar
  9. 9.
    R. T. Tremper, R. A. Giddings, J. D. Hodge andR. S. Gordon,ibid. 57 (1974) 421.Google Scholar
  10. 10.
    R. Raj andM. F. Ashby,Met. Trans. 2 (1971) 1113.Google Scholar
  11. 11.
    M. Hurm andB. Escaig,J. de physique. 34 (1973) 347.Google Scholar
  12. 12.
    R. S. Gordon,J. Amer. Ceram. Soc. 56 (1973) 147.Google Scholar
  13. 13.
    J. Crampon, A. C. D. Chaklader andB. Escaig,J. Phys. Lett. 37 L. (1976) 299.Google Scholar
  14. 14.
    N. Doukhan, R. Duclos andB. Escaig,J. Phys. 34 (1973) 379.Google Scholar
  15. 15.
    R. M. Cannon, W. H. Rhodes andA. H. Hueur, to be published.Google Scholar
  16. 16.
    R. Lindner andG. D. Parfitt,J. Chem. Phys. 26 (1957) 182.Google Scholar
  17. 17.
    B. C. Harding andD. M. Price,Phil. Mag. 26 (1972) 253.Google Scholar
  18. 18.
    B. J. Wuensch, W. C. Steele andT. Vasilos,J. Chem. Phys. 58 (1973) 5258.Google Scholar
  19. 19.
    G. W. Hollenberg andR. S. Gordon,J. Amer. Ceram. Soc. 56 (1973) 109.Google Scholar
  20. 20.
    Y. Oishi andW. D. Kingery,J. Chem. Phys. 33 (1960) 905.Google Scholar
  21. 21.
    J. Narayan andJ. Washburn,Acta. Met. 21 (1973) 533.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1978

Authors and Affiliations

  • J. Crampon
    • 1
  • B. Escaig
    • 1
  1. 1.Laboratoire de Structure et Propriétés de L'Etat SolideUniversité des Sciences et Techniques de LilleVilleneuve D'AscqFrance

Personalised recommendations