Skip to main content
Log in

27Al and29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Solid-state27Al and29Si NMR spectroscopy with magic angle spinning (MAS) of samples was used to study several 1.13 nm tobermorites, most of which were deliberately substituted with aluminium.27Al MASNMR clearly showed that aluminium is tetrahedrally co-ordinated in tobermorite structures. In addition two different aluminium environments resonating at ∼ 57 and 64 ppm from [Al(H2O)6]3+ were detected.29Si MASNMR of pure, anomalous tobermorites showed resonances at −85.7 and −95.7 ppm from tetramethylsilane representing chain middle groups (Q2) and branching sites (Q3), respectively. Anomalous Al-substituted tobermorites, on the other hand, showed two to four resonances representing different silicon environments. One Al-substituted tobermorite showed two resonances at −84.6 and −91.5 ppm which were assigned to Q2(0 Al) and Q3 (1 Al), respectively. In the above tobermorite aluminium appeared to have substituted into branching sites only. Two other Al-substituted tobermorites, however, showed four distinct resonances at ∼ −82.0, −85.2, −92.0 and −96.0 and these were assigned to Q2 (1 Al), Q2 (0 Al), Q3 (1 Al) and Q3 (0 Al), respectively. Thus these two tobermorites showed substitution of aluminium in the chain middle groups as well as branching sites. Another Al-substituted tobermorite which showed a normal thermal behaviour exhibited, as expected, only Q2(0 Al) and Q2 (1 Al) sites resonating at −84.7 and ∼ −80.2 ppm, respectively. No Q3 sites were detected because few or no branching sites are present in this normal tobermorite. The results reported here clearly demonstrate the usefulness of solid-state27Al and29Si MASNMR spectroscopy for the investigation of short-range order in alumino-silicate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Komarneni andD. M. Roy,Science 221 (1983) 647.

    Google Scholar 

  2. S. Komarneni, D. M. Roy andR. Roy,Cement Concrete Res. 12 (1982) 773.

    Google Scholar 

  3. S. Komarneni andD. M. Roy, Hydrothermal Interactions of Cement or Mortar with Zeolites or Montmorillonites, in “Scientific Basis for Nuclear Waste Management”, Vol. 6, edited by D. G. Brookins (Elsevier, New York, 1983) pp. 55–62.

    Google Scholar 

  4. S. Komarneni,Nucl. Chem. Waste Management, in press.

  5. H. F. W. Taylor, “The Chemistry of Cements” (Academic Press, London, 1964), Vol. I, p. 460.

    Google Scholar 

  6. H. D. Megaw andC. H. Kelsey,Nature 177 (1956) 390.

    Google Scholar 

  7. H. F. W. Taylor, “Crystal Chemistry of Portland Cement Hydration Products”, Proceedings of the VI International Congress on the Chemistry of Cement, Moscow, USSR (1974) pp. 3–46.

  8. H. F. W. Taylor,Clay Miner. Bull. 3 (1956) 98.

    Google Scholar 

  9. S. A. S. El-Hemaly, T. Mitsuda andH. F. W. Taylor,Cement Concrete Res. 7 (1977) 429.

    Google Scholar 

  10. T. Mitsuda andH. F. W. Taylor,Miner. Mag. 42 (1978) 229.

    Google Scholar 

  11. L. L. Ames,Amer. Mineral. 46 (1961) 1120.

    Google Scholar 

  12. W. Wieker, A. R. Grimmer, A. Winkler, M. Magi, M. Tarmak andE. Lippmaa,Cement Concrete Res. 12 (1982) 333.

    Google Scholar 

  13. S. Komarneni, R. Roy, D. M. Roy, C. A. Fyfe andG. J. Kennedy,Cement Conc. Res. 15 (1985) 723.

    Google Scholar 

  14. E. T. Lippmaa, M. Alla, T. Pehk andG. Engelhardt,J. Amer. Chem. Soc. 100 (1978) 1929.

    Google Scholar 

  15. E. T. Lippmaa, M. Magi, A. Samoson, G. Engelhardt andA. R. Grimmer,ibid. 102 (1980) 4889.

    Google Scholar 

  16. J. V. Smith andC. S. Blackwell,Nature 303 (1983) 223.

    Google Scholar 

  17. D. Muller, W. Gessner, H. J. Behrens andG. Scheler,Chem. Phys. Lett. 79 (1981) 59.

    Google Scholar 

  18. C. A. Fyfe, J. M. Thomas, J. Klinowski andG. C. Gobbi,Angew. Chem. (Eng. Edition)22 (1983) 259.

    Google Scholar 

  19. C. A. Fyfe, G. C. Gobbi, J. Hartman, R. Lenkinki, J. O'Brien, E. R. Beange andM. A. R. Smith,J. Mag. Reson. 47 (1982) 168.

    Google Scholar 

  20. S. Diamond, J. L. White andW. L. Dolch,Amer. Mineral. 51 (1966) 388.

    Google Scholar 

  21. J. G. Thompson,Clay Mineral. 19 (1984) 229.

    Google Scholar 

  22. N. C. M. Alma, G. R. Hays, A. V. Samoson andE. T. Lippmaa,Anal. Chem. 56 (1984) 729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarneni, S., Roy, R., Roy, D.M. et al. 27Al and29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites. J Mater Sci 20, 4209–4214 (1985). https://doi.org/10.1007/BF00552416

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552416

Keywords

Navigation