Journal of Materials Science

, Volume 20, Issue 11, pp 4209–4214 | Cite as

27Al and29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites

  • Sridhar Komarneni
  • Rustum Roy
  • Della M. Roy
  • Colin A. Fyfe
  • Gordon J. Kennedy
  • Aksel A. Bothner-By
  • Josef Dadok
  • A Scott Chesnick


Solid-state27Al and29Si NMR spectroscopy with magic angle spinning (MAS) of samples was used to study several 1.13 nm tobermorites, most of which were deliberately substituted with aluminium.27Al MASNMR clearly showed that aluminium is tetrahedrally co-ordinated in tobermorite structures. In addition two different aluminium environments resonating at ∼ 57 and 64 ppm from [Al(H2O)6]3+ were detected.29Si MASNMR of pure, anomalous tobermorites showed resonances at −85.7 and −95.7 ppm from tetramethylsilane representing chain middle groups (Q2) and branching sites (Q3), respectively. Anomalous Al-substituted tobermorites, on the other hand, showed two to four resonances representing different silicon environments. One Al-substituted tobermorite showed two resonances at −84.6 and −91.5 ppm which were assigned to Q2(0 Al) and Q3 (1 Al), respectively. In the above tobermorite aluminium appeared to have substituted into branching sites only. Two other Al-substituted tobermorites, however, showed four distinct resonances at ∼ −82.0, −85.2, −92.0 and −96.0 and these were assigned to Q2 (1 Al), Q2 (0 Al), Q3 (1 Al) and Q3 (0 Al), respectively. Thus these two tobermorites showed substitution of aluminium in the chain middle groups as well as branching sites. Another Al-substituted tobermorite which showed a normal thermal behaviour exhibited, as expected, only Q2(0 Al) and Q2 (1 Al) sites resonating at −84.7 and ∼ −80.2 ppm, respectively. No Q3 sites were detected because few or no branching sites are present in this normal tobermorite. The results reported here clearly demonstrate the usefulness of solid-state27Al and29Si MASNMR spectroscopy for the investigation of short-range order in alumino-silicate materials.


Nuclear Magnetic Resonance Thermal Behaviour Magnetic Resonance Spectroscopy Resonance Spectroscopy Tetramethylsilane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Komarneni andD. M. Roy,Science 221 (1983) 647.Google Scholar
  2. 2.
    S. Komarneni, D. M. Roy andR. Roy,Cement Concrete Res. 12 (1982) 773.Google Scholar
  3. 3.
    S. Komarneni andD. M. Roy, Hydrothermal Interactions of Cement or Mortar with Zeolites or Montmorillonites, in “Scientific Basis for Nuclear Waste Management”, Vol. 6, edited by D. G. Brookins (Elsevier, New York, 1983) pp. 55–62.Google Scholar
  4. 4.
    S. Komarneni,Nucl. Chem. Waste Management, in press.Google Scholar
  5. 5.
    H. F. W. Taylor, “The Chemistry of Cements” (Academic Press, London, 1964), Vol. I, p. 460.Google Scholar
  6. 6.
    H. D. Megaw andC. H. Kelsey,Nature 177 (1956) 390.Google Scholar
  7. 7.
    H. F. W. Taylor, “Crystal Chemistry of Portland Cement Hydration Products”, Proceedings of the VI International Congress on the Chemistry of Cement, Moscow, USSR (1974) pp. 3–46.Google Scholar
  8. 8.
    H. F. W. Taylor,Clay Miner. Bull. 3 (1956) 98.Google Scholar
  9. 9.
    S. A. S. El-Hemaly, T. Mitsuda andH. F. W. Taylor,Cement Concrete Res. 7 (1977) 429.Google Scholar
  10. 10.
    T. Mitsuda andH. F. W. Taylor,Miner. Mag. 42 (1978) 229.Google Scholar
  11. 11.
    L. L. Ames,Amer. Mineral. 46 (1961) 1120.Google Scholar
  12. 12.
    W. Wieker, A. R. Grimmer, A. Winkler, M. Magi, M. Tarmak andE. Lippmaa,Cement Concrete Res. 12 (1982) 333.Google Scholar
  13. 13.
    S. Komarneni, R. Roy, D. M. Roy, C. A. Fyfe andG. J. Kennedy,Cement Conc. Res. 15 (1985) 723.Google Scholar
  14. 14.
    E. T. Lippmaa, M. Alla, T. Pehk andG. Engelhardt,J. Amer. Chem. Soc. 100 (1978) 1929.Google Scholar
  15. 15.
    E. T. Lippmaa, M. Magi, A. Samoson, G. Engelhardt andA. R. Grimmer,ibid. 102 (1980) 4889.Google Scholar
  16. 16.
    J. V. Smith andC. S. Blackwell,Nature 303 (1983) 223.Google Scholar
  17. 17.
    D. Muller, W. Gessner, H. J. Behrens andG. Scheler,Chem. Phys. Lett. 79 (1981) 59.Google Scholar
  18. 18.
    C. A. Fyfe, J. M. Thomas, J. Klinowski andG. C. Gobbi,Angew. Chem. (Eng. Edition)22 (1983) 259.Google Scholar
  19. 19.
    C. A. Fyfe, G. C. Gobbi, J. Hartman, R. Lenkinki, J. O'Brien, E. R. Beange andM. A. R. Smith,J. Mag. Reson. 47 (1982) 168.Google Scholar
  20. 20.
    S. Diamond, J. L. White andW. L. Dolch,Amer. Mineral. 51 (1966) 388.Google Scholar
  21. 21.
    J. G. Thompson,Clay Mineral. 19 (1984) 229.Google Scholar
  22. 22.
    N. C. M. Alma, G. R. Hays, A. V. Samoson andE. T. Lippmaa,Anal. Chem. 56 (1984) 729.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • Sridhar Komarneni
    • 1
  • Rustum Roy
    • 1
  • Della M. Roy
    • 1
  • Colin A. Fyfe
    • 2
  • Gordon J. Kennedy
    • 2
  • Aksel A. Bothner-By
    • 3
  • Josef Dadok
    • 3
  • A Scott Chesnick
    • 3
  1. 1.Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of ChemistryUniversity GuelphGuelphCanada
  3. 3.Department of ChemistryCarnegie-Mellon UniversityPittsburghUSA

Personalised recommendations