Journal of Materials Science

, Volume 20, Issue 11, pp 4050–4056 | Cite as

Effect of inclusions on size of surface flaws in glass-crystal composites

  • D. P. H. Hasselman
  • Deidre Hirschfeld
  • Henri Tawil
  • Edwin K. Beauchamp
Papers

Abstract

Indentation fracture studies were conducted on three sodium borosilicate glasses containing a dispersed phase of alumina inclusions with different degrees of thermal expansion mismatch between the glass matrices and the alumina. The alumina inclusions were found to cause a significant decrease in the size of the indentation cracks compared to those in the glass. This effect was greatest at the higher values of indentation load, which resulted in cracks of dimensions of sufficient size that their propagation was impeded by the tougher alumina dispersions. The fracture toughness for the composite samples calculated from the indentation data showed a significant increase with increasing crack size. For the smallest cracks in these composites, the value for fracture toughness was well below the value obtained in an earlier study by the single-edge notch-beam technique. The fracture toughness for the larger crack sizes which interacted with the alumina dispersions showed excellent agreement with the notch-beam data. The residual stresses due to the thermal expansion mismatch appeared to lead to a slight increase in the mean crack size regardless of the direction of thermal expansion mismatch.

Keywords

Residual Stress Fracture Toughness Disperse Phase Borosilicate Glass Small Crack 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. F. Lange,J. Amer. Ceram. Soc. 54 (1971) 614.Google Scholar
  2. 2.
    J. C. Swearengen, E. K. Beauchamp andR. J. Eagan, in “Fracture Mechanics of Ceramics”, Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 973.Google Scholar
  3. 3.
    K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 577.Google Scholar
  4. 4.
    D. P. H. Hasselman andR. M. Fulrath,J. Amer. Ceram. Soc. 49 (1966) 68.Google Scholar
  5. 5.
    Idem, ibid. 48 (1965) 218.Google Scholar
  6. 6.
    W. J. Frey andJ. D. Mackenzie,J. Mater. Sci. 2 (1967) 124.Google Scholar
  7. 7.
    D. P. H. Hasselman, J. C. Swearengen andE. K. Beauchamp,ibid. 15 (1980) 518.Google Scholar
  8. 8.
    F. F. Lange,Phil. Mag. 22 (1970) 983.Google Scholar
  9. 9.
    A. G. Evans,ibid. 26 (1972) 1327.Google Scholar
  10. 10.
    K. T. Faber andA. G. Evans,Acta Metall. 31 (1983) 565.Google Scholar
  11. 11.
    M. P. Borom,J. Amer. Ceram. Soc. 60 (1977) 17.Google Scholar
  12. 12.
    P. Hing andP. W. McMillan,J. Mater. Sci. 8 (1973) 1041.Google Scholar
  13. 13.
    S. W. Freiman andL. L. Hench,J. Amer. Ceram. Soc. 55 (1972) 86.Google Scholar
  14. 14.
    R. Morena, K. Niihara andD. P. H. Hasselman,ibid. 66 (1983) 673.Google Scholar
  15. 15.
    B. R. Lawn, A. G. Evans andD. B. Marshall,ibid. 63 (1980) 574.Google Scholar
  16. 16.
    K. Niihara, R. Morena andD. P. H. Hasselman,J. Mater. Sci. Lett. 1 (1982) 13.Google Scholar
  17. 17.
    R. L. Fullman,Trans. AIME 197 (1953) 447.Google Scholar
  18. 18.
    B. B. Ghate, W. C. Smith, C. H. Kim, D. P. H. Hasselman andG. E. Kane,Amer. Ceram. Soc. Bull. 54 (1975) 210.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • D. P. H. Hasselman
    • 1
  • Deidre Hirschfeld
    • 1
  • Henri Tawil
    • 1
  • Edwin K. Beauchamp
    • 2
  1. 1.Department of Materials EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Sandia National LaboratoriesAlburquerqueUSA

Personalised recommendations