Skip to main content
Log in

Non-isothermal calorimetric determination of precipitate interfacial energies

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Equations suitable for computing specific interfacial energies of precipitates dissolving by a first order transformation were developed on the basis of the singularities taking place at the critical temperature,T c, under equilibrium conditions. These equations employ data which can be determined by differential scanning calorimetry. Also the conditions for reaching dynamic equilibrium of particle volume fraction belowT c are analysed in terms of a maximum permissible experimental heating rate. The results obtained for disperse order inαCu-Al alloys are in good agreement with those expected from the observed particle features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Gifkins (Ed.), “Interfaces” (Butterworths, Sevenoaks, Kent, UK, 1969).

    Google Scholar 

  2. E. D. Hondros,ibid. p. 77.

    Google Scholar 

  3. J. J. Kramer, G. M. Pound andR. F. Mehi,Acta. Metall. 6 (1958) 763.

    Google Scholar 

  4. J. D. Boyd andR. B. Nicholson,ibid. 9 (1971) 1101.

    Google Scholar 

  5. G. Veith, L. Trieb, W. Puschl andH. P. Aubauer,Phys. Status. Solidi 27 (1975) 59.

    Google Scholar 

  6. L. Trieb andG. Veith,Acta. Metall. 26 (1978) 185.

    Google Scholar 

  7. W. Gaudig andH. Warlimont,Z. Metallkde. 60 (1969) 488.

    Google Scholar 

  8. C. A. Johnson,Surf. Sci. 3 (1965) 429.

    Google Scholar 

  9. M. Avrami,J. Chem. Phys. 7 (1939) 1103.

    Google Scholar 

  10. J. D. Verhoeven, “Fundamentals of Physical Metallurgy” (John Wiley, New York, 1974) p. 401.

    Google Scholar 

  11. E. W. Bragg andE. J. Williams,Proc. Roy. Soc. 145A (1934) 699.

    Google Scholar 

  12. J. E. House Jr andJ. D. House,Thermochim. Acta 54 (1982) 213.

    Google Scholar 

  13. A. Varschavsky,Met. Trans. 13A (1982) 801.

    Google Scholar 

  14. A. Varschavsky andE. Donoso,ibid. 14A (1983) 875.

    Google Scholar 

  15. R. Delasi andP. N. Adler,ibid. 8A (1977) 1177.

    Google Scholar 

  16. J. M. Papazian,ibid. 13A (1982) 761.

    Google Scholar 

  17. M. Sehetbauer, L. Trieb andM. P. Aubauer,Z. Metallkde 67 (1976) 431.

    Google Scholar 

  18. S. Matsuo andL. M. Clarenbrough,Acta. Metall. 29 (1963) 709.

    Google Scholar 

  19. W. Gaudig andH. Warlimont,ibid. 29 (1978) 709.

    Google Scholar 

  20. H. Brooks, “Metal Interfaces” (American Society for Metals, Cleveland, Ohio, 1952) p. 20.

    Google Scholar 

  21. H. W. King,J. Mater. Sci. 1 (1966) 79.

    Google Scholar 

  22. J. M. Mader, A. H. Heuer andT. E. Mitchell, “Solid-Solid Phase Transformations”, edited by H. I. Aaronson, D. E. Laughlin, R. F. Sekerka and C. M. Wayman, (The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1982) p. 727.

    Google Scholar 

  23. W. M. Stobbs andG. R. Purdy,Acta. Metall. 26 (1978) 1069.

    Google Scholar 

  24. V. Perovic, G. R. Purdy andL. M. Brown,ibid. 21 (1979) 1075.

    Google Scholar 

  25. Idem, ibid. 29 (1981) 889.

    Google Scholar 

  26. V. Raghraran andM. Cohen, “Treatise on Solid State Chemistry”, Vol. 5, edited by M. B. Hanay, (Plenum Press, New York, 1975) p. 67.

    Google Scholar 

  27. P. J. Bergman andB. J. Halperin,Phys. Rev. 13B (1976) 2145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varschavsky, A. Non-isothermal calorimetric determination of precipitate interfacial energies. J Mater Sci 20, 3881–3889 (1985). https://doi.org/10.1007/BF00552376

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552376

Keywords

Navigation