Journal of Materials Science

, Volume 20, Issue 11, pp 3873–3880 | Cite as

Crazing and shear deformation in glass bead-filled glassy polymers

  • M. E. J. Dekkers
  • D. Heikens
Papers

Abstract

The competition between craze formation and shear band formation at small glass beads embedded in matrices of glassy polymers has been investigated. This has been done by performing constant strain rate tensile tests over a wide range of strain rates and temperatures, and examining the deformation pattern formed at the beads with a light microscope. The glassy polymers under investigation were polystyrene, polycarbonate, and two types of styrene—acrylonitrile copolymer. It was found that besides matrix properties, strain rate and temperature, the degree of interfacial adhesion between the glass beads and the matrix also has a profound effect on the competition between craze and shear band formation: at excellently adhering beads craze formation is favoured, whereas at poorly adhering beads shear band formation is favoured. This effect is caused by the difference in local stress situation, craze formation being favoured under a triaxial stress state and shear band formation under a biaxial stress state. The kinetics of crazing and shear deformation have also been studied, using a simple model and Eyring's rate theory of plastic deformation. The results suggest that chain scission may be the rate-determining step in crazing but not in shear deformation.

Keywords

Shear Deformation Glass Bead Acrylonitrile Triaxial Stress Constant Strain Rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. T. Wellinghoff andE. Baer,J. Appl. Polym. Sci. 22 (1978) 2025.Google Scholar
  2. 2.
    A. M. Donald andE. J. Kramer,J. Mater. Sci. 17 (1982) 1871.Google Scholar
  3. 3.
    A. J. Kinloch andR. J. Young, “Fracture Behaviour of Polymers” (Applied Science, London, 1983).Google Scholar
  4. 4.
    M. E. J. Dekkers andD. Heikens,J. Mater. Sci. 18 (1983) 3281.Google Scholar
  5. 5.
    idem, J. Mater. Sci. Lett. 3 (1984) 307.Google Scholar
  6. 6.
    J. Mater. Sci. 19 (1984) 3271.Google Scholar
  7. 7.
    H. Eyring,J. Chem. Phys. 4 (1936) 283.Google Scholar
  8. 8.
    A. S. Krausz andH. Eyring, “Deformation Kinetics” (Wiley, New York, 1975).Google Scholar
  9. 9.
    M. E. J. Dekkers andD. Heikens,J. Mater. Sci. 20 (1985) 3493.Google Scholar
  10. 10.
    D. Heikens, S. D. Sjoerdsma andW. J. Coumans,ibid. 16 (1981) 429.Google Scholar
  11. 11.
    B. Maxwell andL. F. Rahm,Ind. Eng. Chem. 41 (1949) 1988.Google Scholar
  12. 12.
    C. B. Bucknall, “Toughened Plastics” (Applied Science, London, 1977).Google Scholar
  13. 13.
    S. D. Sjoerdsma, M. E. J. Dekkers andD. Heikens,J. Mater. Sci. 17 (1982) 2605.Google Scholar
  14. 14.
    C. Bauwens-Crowet, J. C. Bauwens andG. Homés,J. Polym. Sci. A2 7 (1969) 735.Google Scholar
  15. 15.
    M. E. J. Dekkers andD. Heikens,J. Appl. Polym. Sci. 30 (1985) 2389.Google Scholar
  16. 16.
    S. Madorsky,J. Res. Nat. Bur. Stand. 62 (1959) 219.Google Scholar
  17. 17.
    S. N. Zhurkov andE. E. Thomashevsky, in “The Physical Basis of Yield and Fracture”, Conference Proceedings (Institute of Physics, London, 1966) p. 200.Google Scholar
  18. 18.
    A. Davis andJ. H. Golden,J. Chem. Soc. B1 (1968) 45.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • M. E. J. Dekkers
    • 1
  • D. Heikens
    • 1
  1. 1.Laboratory of Polymer TechnologyEindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations