Skip to main content
Log in

Production of metal-zirconium type amorphous wires and their mechanical strength and structural relaxation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal-metal type amorphous wires with a good ductility were produced in the M-Zr (M=Cu, Cu-Nb and Cu-Ta) alloy systems by a technique using melt spinning into rotating water. The formation of the amorphous wires is limited to a narrow range of 35 to 40 at % zirconium where the critical sample thickness for the formation of an amorphous phase is above about 100μm and the amount of copper replaced by niobium or tantalum is less than about 7 and 5 at %, respectively. The wires have a circular crosssection and a rather smooth peripheral surface. Their diameters are in the range of 0.07 to 0.15 mm. The Vickers hardness,H v, and tensile strength,σ f, are of the order of 425 to 440 DPN and 1670 to 1810 MPa. The elongation to fracture,ε f, is about 2.4 to 2.7%. Cold drawing to about 30% reduction in area results in increases inσ f andε f by about 10% and 35%, respectively. Furthermore, the addition of 5 at % niobium results in decreases inσ f andH v by about 14% and 4%, respectively, without detriment to the good bending ductility. Owing to the faster quench rates of the wire samples, caused by the inherent differences in the solidification process of the ejected melt as well as in the manner of cooling after solidification, the amorphous wires have been found to exhibit a considerably higher relaxation enthalpy value, ΔH, and a lower temperature for the onset of structural relaxation as compared with the amorphous ribbon having the same thickness as the diameter of the wire, demonstrating that the amorphous wires possess a higher degree of structural disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Hagiwara, A. Inoue andT. Masumoto,Met. Trans. 13 (1982) 373.

    Google Scholar 

  2. A. Inoue, M. Hagiwara andT. Masumoto,J. Mater. Sci. 17 (1982) 580.

    Google Scholar 

  3. M. Hagiara, A. Inoue andT. Masumoto,Mater. Sci. Eng. 54 (1982) 197.

    Google Scholar 

  4. A. Inoue, Y. Masumoto, N. Yano andT. Masumoto,J. Mater. Sci. in press.

  5. T. Masumoto, I. Ohnaka, A. Inoue andM. Hagiwara,Scripta Metall. 15 (1981) 293.

    Google Scholar 

  6. A. Inoue, H. S. Chen, J. T. Krause, T. Masumoto andM. Hagiwara,J. Mater. Sci. 18 (1983) 2743.

    Google Scholar 

  7. I. Ohnaka, T. Fukusako andT. Daido,J. Japan Inst. Metals 45 (1981) 751.

    Google Scholar 

  8. T. Masumoto, A. Inoue, M. Hagiwara, I. Ohnaka andT. Fukusako, Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, August 1981, Vol. 1, edited by T. Masumoto and K. Suzuki (The Japan Institute of Metals, Sendai, 1982) p. 47.

    Google Scholar 

  9. H. S. Chen, R. C. Sherwood, S. Jin, G. C. Chi, A. Inoue, T. Masumoto andM. Hagiwara,J. Appl. Phys. 55 (1984) 1796.

    Google Scholar 

  10. A. Inoue andT. Masumoto,Engng Mater. 30 (5) (1982) 47, in Japanese.

    Google Scholar 

  11. M. Hagiwara, A. Inoue andT. Masumoto,Met. Trans. 12A (1981) 1027.

    Google Scholar 

  12. Idem, Sci. Rep. Res. Inst. Tohoku Univ. A-29 (1981) 351.

    Google Scholar 

  13. M. H. Cohen andD. Turnbull,Nature 189 (1961) 131.

    Google Scholar 

  14. D. Turnbull,Contemp. Phys. 10 (1969) 473.

    Google Scholar 

  15. H. A. Davies, “Rapidly Quenched Metals III”, edited by B. Cantor, Vol. 1 (The Metals Society, London, 1978) p. 1.

    Google Scholar 

  16. M. Naka, Y. Nishi andT. Masumoto,ibid.“ p. 231.

    Google Scholar 

  17. Y. Nishi, K. Suzuki andT. Masumoto, Proceedings of the 4th International Conference on Rapidly Quenched Metals, Sendai, August 1981, Vol. 1; edited by T. Masumoto and K. Suzuki (The Japan Institute of Metals, Sendai, 1982) p. 217.

    Google Scholar 

  18. H. S. Chen,Acta Metall. 22 (1974) 897.

    Google Scholar 

  19. D. Turnbull,J. Phys. Colloque-4 35 (1974) 1.

    Google Scholar 

  20. “Metals Databook” (The Japan Institute of Metals, Maruzen, Tokyo, 1974) p. 156.

  21. S. Tomizawa andT. Masumoto,Sci. Rep. Res. Inst. Tohoku Univ. A-26 (1977) 263.

    Google Scholar 

  22. A. Inoue, T. Masumoto, M. Hagiwara andH. S. Chen,Scripta Metall. 17 (1983) 1205.

    Google Scholar 

  23. Idem, unpublished research (1982).

  24. A. Inoue, H. S. Chen andT. Masumoto,J. Non.-Cryst. Solids 61/62 (1984) 949.

    Google Scholar 

  25. Y. Ishihara, private communication, Hitachi Research Laboratory, Hitachi Ltd, Hitachi 317, Japan, August 1981.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, A., Masumoto, T. & Yano, N. Production of metal-zirconium type amorphous wires and their mechanical strength and structural relaxation. J Mater Sci 19, 3786–3795 (1984). https://doi.org/10.1007/BF00552292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552292

Keywords

Navigation