Journal of Materials Science

, Volume 15, Issue 4, pp 825–830 | Cite as

Liquid nitrogen strengths of coated optical glass fibres

  • P. W. France
  • M. J. Paradine
  • M. H. Reeve
  • G. R. Newns


The strengths of plastic-coated glass fibres have been measured at liquid nitrogen temperatures using a bending technique. The method yields data on the strengths of coated optical fibres in the absence of stress corrosion. Pristine strengths corresponding to a breaking strain of 21% have been measured for silica fibre and 12% for sodium borosilicate compound glass fibre, corrected to 50 cm gauge length. The low temperature strength was found to be directly related to the tensile strength measured at room temperature, and the relationship was valid for a variety of glass compositions with differing amounts of surface damage.


Nitrogen Sodium Polymer Tensile Strength Liquid Nitrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Schonhorn, C. R. Kurkjian, R. E. Jaeger, H. N. Vazirani, R. V. Albarino and F. V. Dimarcello, Appl. Phys. Lett. 29 (1976) 712.Google Scholar
  2. 2.
    T. J. Miller, A. C. Hart, W. I. Vroom and M. J. Bowden, Elect. Lett. 14 (1978) 603.Google Scholar
  3. 3.
    R. D. Maurer, Appl. Phys. Lett. 27 (1975) 220.Google Scholar
  4. 4.
    C. R. Kurkjian, R. V. Albarino, J. T. Krause, H. N. Vazirani, F. V. Dimarcello, S. Torza and H. Schonhorn, ibid. 28 (1976) 588.Google Scholar
  5. 5.
    A. G. Evans and S. M. Weiderhorn, Int. J. Fract. 10 (1974) 379.Google Scholar
  6. 6.
    J. E. Ritter, Fib. and Int. Opt. 1 (1978) 387.Google Scholar
  7. 7.
    J. E. Ritter and C. L. Sherburne, J. Amer. Ceram. Soc. 56 (1971) 601.Google Scholar
  8. 8.
    W. F. Thomas, Phys. Chem. Glasses 1 (1960) 4.Google Scholar
  9. 9.
    K. J. Beales, C. R. Day, W. J. Duncan, J. E. Midwinter and G. R. Newns, Proc. IEE 126 (1976) 591.Google Scholar
  10. 10.
    P. W. France, P. L. Dunn and M. H. Reeve, Fib. and Int. Opt. 2 (1980) 267.Google Scholar
  11. 11.
    H. Hasegawa, K. Nishihama and M. Imaoka, J. Non-Cryst. Solids 7 (1972) 93.Google Scholar
  12. 12.
    B. A. Proctor, J. Whitney and J. W. Johnson, Proc. Roy. Soc. 297 (1967) 534.Google Scholar
  13. 13.
    R. J. Charles, J. Appl. Phys. 29 (1958) 1549.Google Scholar
  14. 14.
    A. G. Evans, Int. J. Fract. 10 (1974) 251.Google Scholar
  15. 15.
    D. Kalish and B. K. Tariyal, J. Amer. Ceram. Soc. 61 (1978) 518.Google Scholar

Copyright information

© Chapman and Hall Ltd 1980

Authors and Affiliations

  • P. W. France
    • 1
  • M. J. Paradine
    • 1
  • M. H. Reeve
    • 1
  • G. R. Newns
    • 1
  1. 1.Martlesham HeathPost Office Research CentreIpswichEngland

Personalised recommendations