Advertisement

Journal of Materials Science

, Volume 23, Issue 12, pp 4257–4262 | Cite as

Ionic and electronic conductivity in some simple lithium salts

  • Kanchan Gaur
  • A. J. Pathak
  • H. B. Lal
Papers

Abstract

The electrical conductivity (σ) and thermoelectric power (S) of Li3VO4, Li3PO4 and Li3BO3 solidified melts are presented in the temperature range from 415 K to the melting point of each solid. The ionic (σi,) and electronic (σe) contributions toσ have been separated over the entire temperature range with the help of a time-dependence study of the d.c. electrical conductivity. Superionic phases in all three solids have been observed below their melting points in which the conductivity is almost purely ionic. The value of the phase transition temperature below which the solid transforms from superionic to normal phase has been obtained. It has been shown that in the normal phase, these solids are mixed conductors. Data for the temperature variations of bothσi, andσe are also presented and discussed.

Keywords

Polymer Phase Transition Lithium Electrical Conductivity Melting Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Kvist andA. Lunden,Z. Naturforsch. 20a (1965) 235.Google Scholar
  2. 2.
    ——Idem, ibid. 21a (1966) 1509.Google Scholar
  3. 3.
    Y. W. Hu, I. D. Raistrick andR. A. Huggins,Mater. Res. Bull. 11 (1976) 1227.Google Scholar
  4. 4.
    R. A. Huggins,Electrochim. Acta 22 (1977) 773.Google Scholar
  5. 5.
    R. D. Shanon, B. E. Taylor, A. D. English andT. Berzins, ——ibid. 22 (1977) 783.Google Scholar
  6. 6.
    R. T. Jonson Jr andR. M. Biefeld, in “Fast Ion Transport in Solids”, edited by P. Vashishta, J. Mundy and S. Shenoy (Eisevier North-Holland, Amsterdam, 1979) p. 457.Google Scholar
  7. 7.
    H. L. Tuller, D. P. Button andD. R. Uhlman,J. Non-Cryst. Solids 40 (1980) 93.Google Scholar
  8. 8.
    A. J. Pathak, K. Gaur andH. B. Lal,J. Mater. Sci. Lett. 5 (1986) 785.Google Scholar
  9. 9.
    ——Idem, ibid. 5 (1986) 1058.Google Scholar
  10. 10.
    K. Gaur, A. J. Pathak andH. B. Lal, ——ibid. 7 (1988) 425.Google Scholar
  11. 11.
    H. B. Lal, K. Gaur andA. J. Pathak,J. Mater. Sci. in press.Google Scholar
  12. 12.
    K. Shahi, H. B. Lal andS. Schandra,Indian J. Pure Appl. Phys. 13 (1973) 1.Google Scholar
  13. 13.
    O. P. Srivastava, PhD thesis, Gorakhpur University (1983).Google Scholar
  14. 14.
    A. R. West,J. Appl. Electroehem. 3 (1973) 327.Google Scholar
  15. 15.
    J. Zemann,Acta. Crystallogr. 13 (1960) 863.Google Scholar
  16. 16.
    F. Stewner, ——ibid. B27 (1971) 904.Google Scholar
  17. 17.
    I. D. Raistrick andR. A. Huggins, in “Lithium Ion Conducting Solid Electrolytes”, edited by H. V. Venkatasetty (Wiley, New York, 1984) p. 205.Google Scholar
  18. 18.
    I. T. O. Yukio, M. Katsuki andO. I. Tetsu,J. Non-Cryst. Solids 57 (1983) 389.Google Scholar
  19. 19.
    M. J. Rice andW. L. Roth,J. Solid. State Chem. 4 (1972) 294.Google Scholar
  20. 20.
    C. P. Flynn, “Point Defects and Diffusion” (Oxford University Press, London, 1972).Google Scholar
  21. 21.
    W. J. Pardee andG. D. Mahan,J. Solid State Chem. 15 (1975) 310.Google Scholar
  22. 22.
    G. D. Mahan,Phys. Rev. B14 (1976) 780.Google Scholar
  23. 23.
    R. Aronsson, L. Borjesson andL. M. Torell,Phys. Lett. 98A (1983) 205.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • Kanchan Gaur
    • 1
  • A. J. Pathak
    • 1
  • H. B. Lal
    • 1
  1. 1.Department of PhysicsUniversity of GorakhpurGorakhpurIndia

Personalised recommendations