Advertisement

Journal of Materials Science

, Volume 23, Issue 12, pp 4217–4230 | Cite as

High-dose ion implantation of ceramics: benefits and limitations for tribology

  • S. J. Bull
  • T. F. Page
Papers

Abstract

Ion implantation is known to be capable of modifying the surface and near-surface physical, chemical and mechanical properties of solids pertaining to hardness and wear. This paper is concerned with such effects of ion implantation into sapphire and soda-lime-silica glass. It establishes the complex interplay between radiation damage, hardness, surface stress and, for the first time, friction. For sapphire, both the shallow indentation hardness response and the integrated near-surface stress increase with damage and exhibit maxima as the surface eventually amorphizes. For the glass, initial damage is shown to result in structural softening before rehardening at higher doses. The radiation-induced stress in the glass is a complex function of dose and seems partly linked to electronic rather than displacement processes. Some structural change also eventually occurs in the glass akin to amorphization in crystals and is accompanied by changes in hardness and surface stress. Superimposed on these patterns of behaviour are changes in the friction behaviour, part of which is ascribed to increased adhesion presumed due to implantation changing the surface affinity for water adsorption. These effects are demonstrated and discussed in the context of ion-implanted ceramics finding application as controlled friction and/or wear components in engineering applications. A number of caveats are established for such applications. Other effects such as gas bubble formation, crazing and sputtering are shown to lead to surface microstructures which can also play a deleterious role in tribological behaviour.

Keywords

Sapphire Surface Stress Tribological Behaviour Friction Behaviour Indentation Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. P. Bowden andD. Tabor, “The Friction and Lubrication of Solids”, Part 1 (Clarendon, Oxford, 1958).Google Scholar
  2. 2.
    D. H. Buckley andE. Rabinowtcz, Fundamentals of the Wear of Hard Materials, Proceedings of the Conference on Science of Hard Materials 2, Institute of Physics Conference Series No. 75 (The Institute of Physics, Bristol and London, 1986) pp. 825–49.Google Scholar
  3. 3.
    N. E. W. Hartley,Wear 34 (1975) 427.Google Scholar
  4. 4.
    ——Idem, Thin Solid Films 64 (1979) 177.Google Scholar
  5. 5.
    G. Dearnaley,Thin Solid Films 107 (1983) 315.Google Scholar
  6. 6.
    I. L. Singer,Proc. Mater. Res. Soc. 27 (1984) 585.Google Scholar
  7. 7.
    J. K. Hirvonen,J. Vac. Sci. Technol. A3 (1985) 2691.Google Scholar
  8. 8.
    P. Sioshansi, R. W. Oliver andF. D. Matthews,J. Vac. Sci. Technol. A3 (1985) 2670.Google Scholar
  9. 9.
    J. T. A. Pollock,Materials Forum 9 (1986) 127.Google Scholar
  10. 10.
    J. Greggi andR. Kossowsky, in “A STEM microanalytical investigation of nitrogen implanted cemented WC-Co, Science of Hard Materials”, edited by R. K. Viswanadhan, D. J. Rowcliffe and J. Gurland (Elsevier, New York, 1984) pp. 485–97.Google Scholar
  11. 11.
    G. Dearnaley,Rad. Eff. 63 (1982) 1.Google Scholar
  12. 12.
    S. A. Dillich andI. L. Singer,Surf. Coat. Technol. 29 (1986) 207.Google Scholar
  13. 13.
    P. J. Burnett andT. F. Page,J. Maler. Sci 19 (1984) 845.Google Scholar
  14. 14.
    ——Idem, ibid,19 (1984) 3524.Google Scholar
  15. 15.
    C. J. McHargue andC. S. Yust,J. Amer. Ceram. Soc. 67 (1984) 117.Google Scholar
  16. 16.
    J. K. Cochran, K. O. Legg andG. R. Baldau,Proc. Mater. Res. Soc. 17 (1983) 549.Google Scholar
  17. 17.
    P. J. Burnett andT. F. Page, ——Ibid. 27 (1984) 401.Google Scholar
  18. 18.
    T. Hioki, A. Itoh, S. Noda, H. Doi, J. Kawamoto andO. Kamigaito,J. Mater. Sci. Lett. 3 (1984) 1099.Google Scholar
  19. 19.
    T. Hioki, A. Itoh, M. Okhubo, S. Noda, H. Doi, J. Kawamoto andO. Kamigaito,J. Mater. Sci 21 (1986) 1321.Google Scholar
  20. 20.
    C. J. McHargue, G. C. Farlow, C. White, J. M. Williams, B. R. Appleton andH. Naramoto,Mater. Sci. Engng 69 (1985) 123.Google Scholar
  21. 21.
    C. J. McHargue,Int. Met. Rev. 31 (1986) 49.Google Scholar
  22. 22.
    S. G. Roberts andT. F. Page,J. Mater. Sci. 21 (1986) 457.Google Scholar
  23. 23.
    P. J. Burnett andT. F. Page.Wear 114 (1987) 85.Google Scholar
  24. 24.
    N. E. W. Hartley,Proc. Mater. Res. Soc. 7 (1982) 295.Google Scholar
  25. 25.
    P. D. Parry,J. Vac. Sci. Technol. 13 (1976) 622.Google Scholar
  26. 26.
    K. B. Winterbon, P. Sigmund andJ. B. Sanders,Mat. Fys. Medd. Dan. Via. Selsk. 37 (14) (1970) 1.Google Scholar
  27. 27.
    I. Manning andG. P. Mueller,Comp. Phys. Commun. 7 (1974) 85.Google Scholar
  28. 28.
    P. J. Burnett andT. F. Page, Changing the Surface Plasticity and Hardness of Sapphire by Ion implantation, in “Plastic Deformation of Ceramic Materials II”, edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1984) pp. 669–80.Google Scholar
  29. 29.
    B. R. Lawn andE. R. Fuller,J. Mater. Sci. 19 (1984) 4061.Google Scholar
  30. 30.
    P. J. Burnett andT. F. Page, ——ibid,20 (1985) 4624.Google Scholar
  31. 31.
    A. P. Mercer, PhD Thesis, University of Cambridge (1985).Google Scholar
  32. 32.
    A. J. Bourdillon, S. J. Bull, P. J. Burnett andT. F. Page,J. Mater. Sci. 21 (1986) 1547.Google Scholar
  33. 33.
    S. J. Bull, PhD Thesis, University of Cambridge (1987).Google Scholar
  34. 34.
    C. J. McHargue, personal communication (1986).Google Scholar
  35. 35.
    A. A. Griffith,Phil. Trans. Roy. Soc. London 221A (1920) 163.Google Scholar
  36. 36.
    P. D. Townsend, J. C. Kelly andN. E. W. Hartley, “Ion implantation, sputtering and their applications” (Academic, London, 1976) pp. 84–6.Google Scholar
  37. 37.
    J. T. Czernuska andT. F. Page Proc. Brit. Ceram. Soc. 34 (1984) 145.Google Scholar
  38. 38.
    W. C. Oliver, R. Hutchings, J. B. Pethica, I. L. Singer andG. K. Hubler,Proc. Mater. Res. Soc. 27 (1984) 603.Google Scholar
  39. 39.
    P. Mazzoldi,Nucl. Inst. Meth. 209/210 (1983) 1089.Google Scholar
  40. 40.
    B. M. Smetts andT. P. A. Lommem,J. Amer. Ceram. Soc. 65 (1982) C80.Google Scholar
  41. 41.
    G. Battaglin, R. Dal Maschio, G. Della Mea, G. De Marchi, V. Gottardi, M. Guglielmi, P. Mazzoldi andA. Paccagnella,Nucl. Inst. Meth. B1 (1984) 253.Google Scholar
  42. 42.
    M. J. Norgett, M. T. Robinson andI. M. Tor-Rens,Nucl. Engng Design 33 (1975) 50.Google Scholar
  43. 43.
    E. P. Eernisse,J. Appl. Phys. 45 (1974) 167.Google Scholar
  44. 44.
    S. J. Bull andT. F. Page,Nucl. Inst. Meth. in Phys. Rev. B32 (1988) 91.Google Scholar
  45. 45.
    N. H. Macmillan, Chemisorption-induced changes in the plasticity and fracture of non-metals, in “Surface Effects in Crystal Plasticity”, edited by R. M. Latanision and J. T. Fourie (Noordhoff, Leyden, 1977) pp. 629.Google Scholar
  46. 46.
    A. R. C. Westwood, R. D. Huntingdon andN. H. Macmillan J. Appl. Phys. 44 (1973) 5194.Google Scholar
  47. 47.
    A. R. C. Westwood, J. S. Ahearn andJ. J. Mills,Colloids and Surfaces 2 (1981) 1.Google Scholar
  48. 48.
    P. J. Burnett andT. F. Page,J. Mater. Sci. Lett. 4 (1985) 1364.Google Scholar
  49. 49.
    R. E. Hanneman andJ. H. Westbrook,Phil. Mag. 18 (1968) 73.Google Scholar
  50. 50.
    N. H. Macmillan andA. R. C. Westwood, Surface Charge-dependent Mechanical Behaviour of Non-metals, in “Surfaces and Interfaces of Glass and Ceramics”, edited by V. D. Frechette, W. C. La Course and V. L. Burdick (Plenum, New York, 1974) pp. 493–513.Google Scholar
  51. 51.
    A. M. Stoneham andP. W. Tasker,J. Phys. C 18 (1985) L543.Google Scholar
  52. 52.
    ——Idem, Proc. Mater. Res. Soc. 40 (1985) 291.Google Scholar
  53. 53.
    S. J. Bull andT. F. Page,J. Mater. Sci. Lett., in preparation.Google Scholar
  54. 54.
    Idem, in preparation.Google Scholar
  55. 55.
    J. Roth, “Blistering and Bubble Formation”, Institute of Physics Conference Series No. 28 (Institute of Physics, Bristol and London, 1976) pp. 280–92.Google Scholar
  56. 56.
    V. M. Gusev, M. I. Guseva, Yu. V. Marty-Nenko, A. N. Mansurova, V. N. Morosov andO. I. Chelnokov,Rad. Eff. 40 (1979) 37.Google Scholar
  57. 57.
    W. Primak andJ. Luthra,J. Appl. Phys. 37 (1966) 2287.Google Scholar
  58. 58.
    E. P. Eernisse andS. T. Picraux, ——ibid. 48 (1977) 9.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • S. J. Bull
    • 1
    • 2
  • T. F. Page
    • 1
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Materials Development Division, Harwell LaboratoryUKAEADidcot

Personalised recommendations