Skip to main content
Log in

Texture dependent stress corrosion failure of commercial titanium sheets in bromine-methanol solution

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress corrosion cracking (SCC) characteristics of α-titanium sheets in a bromine-methanol solution have been studied in the annealed and cold-rolled conditions using longitudinal and transverse specimens. The times to failure for annealed longitudinal specimens were longer than those for similarly tested transverse specimens. The cold-rolled specimens developed resistance to SCC, but failed by cleavage when notched, unlike the intergranular separation in annealed titanium. The apparent activation energy was found to be texture dependent and was in the range 30 to 51 kJ mol−1 for annealed titanium, and 15kJ mol−1 for cold-rolled titanium. The dependence of SCC behaviour on the texture is related to the changes in the crack initiation times. These are caused by changes in the passivation and repassivation characteristics of the particular thickness plane. The thickness planes are identified with the help of X-ray pole figures obtained on annealed and cold-rolled material. On the basis of the activation energy and the electrochemical measurements, the mechanism of SCC in annealed titanium is identified to be the one involving stress-aided anodic dissolution. On the other hand, the results on the cold-rolled titanium are in support of the hydrogen embrittlement mechanism consisting of hydride precipitation. The cleavage planes identified from the texture data match with the reported habit planes for hydride formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Blackburn, J. A. Feeny and T. R. Beck, “Advances in Corrosion Science and Technology”, Vol. 3 (Plenum Press, New York, 1973) p. 67.

    Google Scholar 

  2. A. J. Sedriks, J. A. S. Green and P. W. Slattery, Corrosion 24 (1968) 172.

    Google Scholar 

  3. A. J. Sedriks and J. A. S. Green ibid 25 (1969) 324.

    Google Scholar 

  4. T. R. Beck, in “The Theory of Stress Corrosion Cracking in Alloys” edited by J. C. Scully (Maney, UK, 1971) p. 64.

    Google Scholar 

  5. J. Spurrier and J. C. Scully, Corrosion 28 (1972) 453.

    Google Scholar 

  6. J. Brettle, Metals and Materials 6 (1972) 442.

    Google Scholar 

  7. R. J. H. Wanhill, Acta Met. 21 (1973) 1253.

    Google Scholar 

  8. F. Larson and A. Zarkades, “Properties of Textured Titanium Alloys”, MCIC-74-20, Battelle Columbus Laboratory, Columbus, Ohio (1974).

    Google Scholar 

  9. D. N. Fager and W. F. Spurr, Trans. ASM Q. 61 (1968) 283.

    Google Scholar 

  10. R. R. Boyer and W. F. Spurr, Met. Trans. 9A (1978) 1443.

    Google Scholar 

  11. H. V. Sudhaker Nayak, K. I. Vasu and Y. V. R. K. Prasad, Scripta Met. 12 (1978) 869.

    Google Scholar 

  12. Idem, J. Electrochem. Soc. India 27 (1978) 95.

    Google Scholar 

  13. A. I. Vogel, “A Text Book of Quantitative Inorganic Analysis”, 3rd Edn. (E.L.B.S., London, 1964) p. 944.

    Google Scholar 

  14. L. G. Schulz, J. Appl. Phys. 20 (1949) 1030.

    Google Scholar 

  15. C. J. McMahon, Jr and D. J. Traux, Corrosion 29 (1973) 47.

    Google Scholar 

  16. J. A. S. Green, ibid. 30 (1974) 175.

    Google Scholar 

  17. H. S. Rosenbaum, “Deformation Twinning” (Gordon and Breach, New York, 1964) p. 43.

    Google Scholar 

  18. M. J. Blackburn and W. H. Smyrl, “Titanium Science and Technology”, Vol. 4 (Plenum Press, New York, 1973) p. 2577.

    Google Scholar 

  19. E. G. Haney, R. Goldberg, R. Ernsberger and W. T. Brehm, Rept. No. 2 (NGR-39-008-014), Mellon Institute (1967).

  20. T. P. Hoar and J. West, Proc. Roy. Soc. A268 (1962) 304.

    Google Scholar 

  21. T. P. Hoar, in “The Theory of Stress Corrosion Cracking in Alloys” edited by J. C. Scully (Maney, UK, 1971) p. 105.

    Google Scholar 

  22. D. T. Powell and J. C. Scully, Corrosion 25 (1969) 483.

    Google Scholar 

  23. I. W. Hall, Met. Trans. 9A (1978) 815.

    Google Scholar 

  24. G. Sanderson and J. C. Scully, Trans. AIME 239 (1967) 1883.

    Google Scholar 

  25. J. D. Boyd, Trans. ASM 62 (1969) 971.

    Google Scholar 

  26. T. S. Liu and M. A. Steinberg, ibid 50 (1958) 455.

    Google Scholar 

  27. I. Aitchison and B. Cox, Corrosion 28 (1972) 83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhaker Nayak, H.V., Vasu, K.I. & Prasad, Y.V.R.K. Texture dependent stress corrosion failure of commercial titanium sheets in bromine-methanol solution. J Mater Sci 15, 1265–1275 (1980). https://doi.org/10.1007/BF00551816

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551816

Keywords

Navigation