Skip to main content
Log in

Atomically sharp cracks in brittle solids: an electron microscopy study

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The issue of bond rupture versus microplasticity as an essential mechanism of crack propagation in brittle solids is addressed. A detailed survey of existing theoretical and experimental evidence relating to this issue highlights the need for direct observations of events within the crack-tip “process zone”, at a level approaching 10 nm. Transmission electron microscopy is accordingly used to study arrested cracks about sharp-contact (Vickers indentation and particle impact) sites in Si, Ge, SiC and Al2O3. The nature of the deformation which accommodates the irreversible contact impression is first investigated, in the light of Marsh's proposal of an “equivalence” between indentation and crack-tip zone processes. Interfacial and tip regions of the surrounding cracks are then examined for any trace of a plasticity-controlled fracture process. Dislocation-like images are indeed evident at the crack planes, but these are shown to be totally inconsistent with any conventional slip mechanism. The close connection between the dislocation patterns and moiré fringe systems along the cracks points to “lattice mismatch” contrast in association with a partial closure and healing operation at the interface. Analysis of all other details in the crack patterns, e.g. the presence of a crack-front contrast band indicative of a residual strain field and the disposition of interfacial fracture steps relative to the dislocation/moiré system, reinforces this interpretation. It is concluded that the concept of an atomically sharp crack provides a sound basis for the theory of fracture of brittle solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange, Vols. 1 to 4 (Plenum, New York, 1974, 1978).

    Google Scholar 

  2. R. Thomson, Ann. Rev. Mat. Sci. 3 (1973) 31.

    Google Scholar 

  3. D. M. Marsh, Proc. Roy. Soc. A279 (1974) 420.

    Google Scholar 

  4. B. J. Hockey and B. R. Lawn, J. Mater. Sci. 10 (1975) 1275.

    Google Scholar 

  5. B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975).

    Google Scholar 

  6. G. R. Irwin, “Handbook of Physics”, Vol. 6 (Springer, Berlin, 1958) p. 551.

    Google Scholar 

  7. A. A. Griffith, Phil. Trans. A221 (1920) 163.

    Google Scholar 

  8. D. S. Dugdale, J. Mech. Phys. Solids 8 (1960) 100.

    Google Scholar 

  9. G. I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55.

    Google Scholar 

  10. N. J. Petch, “Fracture”, edited by H. Liebowitz, Vol. 1, (Academic Press, New York, 1968) Ch. 5.

    Google Scholar 

  11. W. B. Hillig, “Microplasticity”, edited by C. J. McMahon (Interscience, New York, 1968) p. 383.

    Google Scholar 

  12. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Phil. Mag. 28 (1973) 783.

    Google Scholar 

  13. A. Kelly, W. R. Tyson and A. H. Cottrell, Phil. Mag. 15 (1967) 576.

    Google Scholar 

  14. J. R. Rice and R. Thomson, Phil. Mag. 29 (1974) 73.

    Google Scholar 

  15. R. Thomson, C. Hsieh and V. Rana, J. Appl. Phys. 42 (1971) 3154.

    Google Scholar 

  16. C. Hsieh and R. Thomson, ibid. 44 (1973) 2051.

    Google Scholar 

  17. J. E. Sinclair and B. R. Lawn, Proc. Roy. Soc. A329 (1972) 83.

    Google Scholar 

  18. J. E. Sinclair, J. Phys. C: Solid State 5 (1972) L271.

    Google Scholar 

  19. M. F. Kanninen and P. C. Gehlen, Int. J. Fract. Mech. 7 (1971) 471.

    Google Scholar 

  20. R. Thomson, “The Mechanics of Fracture”, edited by F. Erdogan, Vol. 19 (American Society of Mechanical Engineers, New York, 1977) p. 1.

    Google Scholar 

  21. R. Thomson, J. Mater. Sci. 13 (1978) 128.

    Google Scholar 

  22. B. R. Lawn, ibid. 10 (1975) 469.

    Google Scholar 

  23. J. R. Rice, J. Mech. Phys. Solids 26 (1978) 61.

    Google Scholar 

  24. M. V. Swain, B. R. Lawn and S. J. Burns, J. Mater. Sci. 9 (1974) 175.

    Google Scholar 

  25. J. Gilman, Trans. Met. Soc. AIME 212 (1958) 310.

    Google Scholar 

  26. S. J. Burns and W. W. Webb, ibid. 236 (1966) 1165.

    Google Scholar 

  27. Idem, J. Appl. Phys. 41 (1970) 2078, 2086.

    Google Scholar 

  28. B. R. Lawn and M. V. Swain, J. Mater. Sci. 10 (1975) 113.

    Google Scholar 

  29. G. W. Weidmann and D. G. Holloway, Phys. Chem. Glasses 15 (1974) 68.

    Google Scholar 

  30. J. G. Williams and G. P. Marshall, Proc. Roy. Soc. A342 (1975) 55.

    Google Scholar 

  31. S. P. Gunasekera and D. G. Holloway, Phys. Chem. Glasses 14 (1973) 45.

    Google Scholar 

  32. R. E. Hanneman and J. H. Westbrook, Phil. Mag. 18 (1968) 73.

    Google Scholar 

  33. F. M. Ernsberger, J. Amer. Ceram. Soc. 51 (1968) 545.

    Google Scholar 

  34. J. E. Neely and J. D. Mackenzie, J. Mater. Soc. 3 (1968) 603.

    Google Scholar 

  35. B. J. Hockey, unpublished work.

  36. Idem, J. Amer. Ceram. Soc. 54 (1971) 223.

    Google Scholar 

  37. Idem, “Science of Hardness Testing and its Research Applications”, edited by J. H. Westbrook and H. Conrad (American Society for Metals, Metals Park, Ohio, 1973) Ch. 30.

    Google Scholar 

  38. B. J. Hockey, S. M. Wiederhorn and H. Johnson, “Fracture Mechanics of Ceramics”, Vol. 3 (Plenum, New York, 1978).

    Google Scholar 

  39. V. G. Eremenko and V. I. Nikitenko, Phys. Stat. Sol (a) 14 (1972) 317.

    Google Scholar 

  40. M. J. Hill and D. J. Rowcliffe, J. Mater. Sci. 9 (1974) 1569.

    Google Scholar 

  41. A. S. Keh, J. Appl. Phys. 31 (1960) 1538.

    Google Scholar 

  42. B. R. Lawn and T. R. Wilshaw, J. Mater. Sci. 10 (1975) 1049.

    Google Scholar 

  43. A. G. Evans and T. R. Wilshaw, Acta Met. 24 (1976) 939.

    Google Scholar 

  44. L. E. Murr and W. A. Szilva, J. Mater. Sci. 10 (1975) 1536.

    Google Scholar 

  45. J. S. Williams, B. R. Lawn and M. V. Swain, Phys. Stat. Sol. (a) 2 (1970) 7.

    Google Scholar 

  46. M. V. Swain, J. Mater. Sci. 11 (1976) 2345.

    Google Scholar 

  47. H. Alexander and P. Haasen, “Solid State Physics”, Vol. 22, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1968) p. 27.

    Google Scholar 

  48. R. W. Baluffi, Y. Komen and T. Schober, Surf. Sci. 31 (1972) 68.

    Google Scholar 

  49. S. M. Wiederhorn and P. R. Townsend, J. Amer. Ceram. Soc. 53 (1970) 486.

    Google Scholar 

  50. I. V. Gridneva, Yu V. Milman and V. I. Trefilov, Phys. Stat. Sol. (a) 14 (1972) 317.

    Google Scholar 

  51. S. M. Wiederhorn and L. H. Bolz, J. Amer. Ceram. Soc. 53 (1970) 543.

    Google Scholar 

  52. S. M. Wiederhorn, Int. J. Fract. Mech. 4 (1968) 171.

    Google Scholar 

  53. L. Pauling, “The Nature of the Chemical Bond” (Cornell University Press, Ithaca, 1960) Ch. 7.

    Google Scholar 

  54. R. J. Jaccodine, J. Electrochem. Soc. 110 (1963) 524.

    Google Scholar 

  55. J. L. Henshell, D. J. Rowcliffe and J. W. Edington, J. Amer. Ceram. Soc. 60 (1977) 373.

    Google Scholar 

  56. S. M. Wiederhorn, ibid. 52 (1969) 485.

    Google Scholar 

  57. Idem, ibid. 52 (1969) 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawn, B.R., Hockey, B.J. & Wiederhorn, S.M. Atomically sharp cracks in brittle solids: an electron microscopy study. J Mater Sci 15, 1207–1223 (1980). https://doi.org/10.1007/BF00551810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551810

Keywords

Navigation