Journal of Materials Science

, Volume 8, Issue 10, pp 1401–1408 | Cite as

The dielectric constants of current-blackened single crystral yttria-stabilized zirconia

  • J. S. Thorp
  • H. P. Buckley


The dielectric constants of 8 mol % single crystal yttria-stabilized zirconia have been measured, using both radio-frequency and microwave methods, before and after blackening by high temperature electrolysis. For as-grown material ε′ = 38±4 and tan δ = 0.004. After electrolysis both the dielectric constant and loss tangent of the current-blackened material increased; this experimental data has been compared with theoretical predictions for composite dielectrics. The dielectric behaviour in the current-blackened material was consistent with the formation of metallic particles; these initially appeared to be spherical but elongated as electrolysis proceeded.


Polymer Experimental Data Microwave Zirconia Dielectric Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Duwez, F. H. Brown, and F. Odell, J. Electro-Chem. Soc. 8 (1951) 356.Google Scholar
  2. 2.
    J. S. Thorp, A. Aypar, and J. S. Ross, J. Mater. Sci. 7 (1972) 729.Google Scholar
  3. 3.
    D, A. Wright, J. S. Thorp, A. Aypar, and H. P. Buckley, ibid 8 (1973) 876.Google Scholar
  4. 4.
    P. J. Harrop and J. N. Wanklyn, Brit. J. Appl Phys. 18 (1967) 739.Google Scholar
  5. 5.
    M. Sanesi, G. Cremante, S. Pizzini, and V. Wagner, Z. Naturforsch. 26A (1971) 159.Google Scholar
  6. 6.
    J. C. Maxwell, “Electricity and Magnetism” 1 (Clarendon Press, Oxford, 1892) p. 452.Google Scholar
  7. 7.
    K. W. Wagner, Arch. Elektrotech. 2 (1914) 371.Google Scholar
  8. 8.
    R. W. Sillars, J. Inst. Elec. Eng. (London) 80 (1937) 378.Google Scholar
  9. 9.
    K. Lichtenecker, Physik. Z. 10 (1909) 1005.Google Scholar
  10. 10.
    A. Büchner, Wiss. Veroffentt Siemens-Werken 18 (1939) 84.Google Scholar
  11. 11.
    I. A. Sikorskii, Zn. Tekh. Fiz. 26 (1956) 248.Google Scholar
  12. 12.
    S. Roberts and A. Von Hippel, J. Appl. Phys. 17 (1946) 610.Google Scholar
  13. 13.
    H. M. Barlow and A. L. Cullen, “Microwave Measurements” (London, Constable, 1950).Google Scholar
  14. 14.
    A. Guntherschultze and S. F. Keller, Z. Phys. 75 (1932) 78.Google Scholar
  15. 15.
    A. Charlesby, AERE Report No. AERE M/R 1014, 1952.Google Scholar
  16. 16.
    R. E. W. Casselton, J. S. Thorp, and D. A. Wright Proc. Brit. Ceram. Soc. 19 (1970) 265.Google Scholar
  17. 17.
    R. E. W. Casselton, J. Penny, and M. J. Reynolds, Trans. and J. Brit. Ceram. Soc. 70 (1971) 115.Google Scholar
  18. 18.
    J. M. Farley, J. S. Thorp, J. S. Ross, and G. A. Saunders, J. Mater. Sci. 7 (1972) 475.Google Scholar

Copyright information

© Chapman and Hall Ltd 1973

Authors and Affiliations

  • J. S. Thorp
    • 1
  • H. P. Buckley
    • 1
  1. 1.Department of Applied Physics and ElectronicsUniversity of DurhamUK

Personalised recommendations