Advertisement

Journal of Materials Science

, Volume 21, Issue 8, pp 2643–2647 | Cite as

Analytical expression for the total electrical conductivity of unannealed and annealed metal films

  • M. Bedda
  • S. Messaadi
  • C. R. Pichard
  • A. J. Tosser
Papers

Abstract

Previous studies have shown that the Cottey function constitutes an alternative formulation for the Fuchs-Sondheimer size-effect function, provided that a new parameter is used. This result is used for calculating the effects of scattering at a grain boundary, and a good agreement with the Mayadas-Shatzkes model is found. When background, grain-boundary and external-surface scattering are simultaneously operative, a simple analytical expression for the electrical conductivity of polycrystalline, monocrystalline and columnar metal films can be obtained in the whole experimental domain and may conveniently replace the sophisticated expression of Mayadas and Shatzkes. This expression is similar to that obtained in the framework of the multidimensional models, previously presented. No limitation exists in the value of the electronic specular reflection coefficient, and the theoretical expression is related both to annealed and unannealed films.

Keywords

Polymer Reflection Electrical Conductivity Reflection Coefficient Alternative Formulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Pichard, M. Bedda, C. R. Tellier, V. I. Vatamanyuk and A. J. Tosser, J. Mater. Sci. 20 (1985) 4185.Google Scholar
  2. 2.
    E. H. Sondheimer, Adv. Phys. 1 (1952) 1.Google Scholar
  3. 3.
    C. R. Tellier and A. J. Tosser, “Thin Film Science and Technology 2”, (Elsevier, Amsterdam, 1982) Ch. 1.Google Scholar
  4. 4.
    A. A. Cottey, Thin Solid Films 1 (1967/68) 297.Google Scholar
  5. 5.
    C. R. Tellier, C. R. Pichard and A. J. Tosser, J. Mater. Sci. Lett. 1 (1982) 271.Google Scholar
  6. 6.
    C. R. Pichard, Thèse de Doctorat-ès-Sciences, Université de Nancy-I (1985).Google Scholar
  7. 7.
    A. F. Mayadas and M. Shatzkes, Phys. Rev. B 1 (1970) 1382.Google Scholar
  8. 8.
    C. R. Tellier and A. J. Tosser, Le Vide, Couches Minces 189 (1977) 121.Google Scholar
  9. 9.
    C. R. Pichard, C. R. Tellier and A. J. Tosser, ibid. 408 (1981) 619.Google Scholar
  10. 10.
    C. R. Tellier and A. J. Tosser, “Thin Film Science and Technology 2” (Elsevier, Amsterdam, 1982) Ch. 2.Google Scholar
  11. 11.
    C. R. Tellier, C. R. Pichard, V. I. Vatamanyuk and A. J. Tosser, J. Mater. Sci. Lett. 2 (1983) 579.Google Scholar
  12. 12.
    C. R. Pichard, C. R. Tellier and A. J. Tosser, Thin Solid Films 62 (1979) 189.Google Scholar
  13. 13.
    C. R. Tellier and A. J. Tosser, ibid. 70 (1980) 225.Google Scholar
  14. 14.
    C. R. Pichard, V. I. Vatamanyuk, A. Khalidnaciri, C. R. Tellier and A. J. Tosser, J. Mater. Sci. Lett. 3 (1984) 447.Google Scholar
  15. 15.
    M. Bedda, Thesis, Université de Nancy-I (1985).Google Scholar
  16. 16.
    V. I. Vatamanyuk, A. J. Tosser, C. R. Pichard and C. R. Tellier, J. Mater. Sci. 19 (1984) 4138.Google Scholar
  17. 17.
    L. Guendouz, C. R. Tellier, A. J. Tosser and C. R. Pichard, J. Mater. Sci. Lett. 3 (1984) 377.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1986

Authors and Affiliations

  • M. Bedda
    • 1
  • S. Messaadi
    • 1
  • C. R. Pichard
    • 1
  • A. J. Tosser
    • 1
  1. 1.Laboratoire d'ElectroniqueUniversité de Nancy-IVandoeuvre les Nancy CedexFrance

Personalised recommendations