Advertisement

Journal of Materials Science

, Volume 11, Issue 2, pp 333–340 | Cite as

Electrodiffusion damage in sodium chloride grain boundaries

  • L. B. Harris
Papers

Abstract

The continuous passage of an electric current through pure sodium chloride bicrystals has been found to produce grain-boundary damage similar to that caused by electromigration in conducting thin films. The damage takes the form of an array of voids that seriously reduces the strength of the boundary. As in electromigration, the voids appear to be due to the condensation of vacancies following removal of ions by the current. However, the voids produced in tilt boundaries by current at 250‡ C have regularities of distribution and shape that suggest they are associated with separation of a second phase from segregated boundary impurity, the phase change disorder resulting from the precipitation reaction leading to rapid production of damage. The phase change process is discussed.

Keywords

Sodium Polymer Precipitation Chloride Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. D'heurle andR. Rosenberg,Phys. Thin Films 7 (1973) 257.Google Scholar
  2. 2.
    W. D. Kingery,J. Amer. Ceram. Soc. 57 (1974) 1, 74.Google Scholar
  3. 3.
    L. B. Harris andJ. L. Schlederer,Acta Met. 19 (1971) 577.Google Scholar
  4. 4.
    L. B. Harris,Phil. Mag. to be published.Google Scholar
  5. 5.
    R. W. Dreyfus andA. S. Nowick,Phys. Rev. 126 (1962) 1367.Google Scholar
  6. 6.
    W. J. Pardee andG. D. Mahan,J. Solid State Chem. to be published.Google Scholar
  7. 7.
    I. Baltog, C. Ghita andM. Guirgea,J. Phys. C: Solid State Phys 7 (1974) 1892.Google Scholar
  8. 8.
    M. I. Abaev andM. I. Kornfeld,Soviet Phys. -Solid State 7 (1966) 2271.Google Scholar
  9. 9.
    G. Hauret andM. Girard-Nottin,Phys. Stat. Sol. 17 (1966) 881.Google Scholar
  10. 10.
    G. Kumbartzki andK. Thommen,Z. Phys. 184 (1965) 355.Google Scholar
  11. 11.
    F. Frohlich andG. Hensel,Phys. Stat. Sol. 24 (1967) 535.Google Scholar
  12. 12.
    S. Chandra andJ. Rolfe,Canad. J. Phys. 49 (1971) 2098.Google Scholar
  13. 13.
    J. S. Cook andJ. S. Dryden,Proc. Phys. Soc. 80 (1962) 479.Google Scholar
  14. 14.
    K. Suzuki,J. Phys. Soc. Japan 10 (1955) 794.Google Scholar
  15. 15.
    K. Yaki andG. Honjo,ibid 22 (1967) 610.Google Scholar
  16. 16.
    J. H. Crawford,J. Phys. Chem. Solids 31 (1970) 399.Google Scholar
  17. 17.
    K. Suzuki,J. Phys. Soc. Japan 13 (1958) 179.Google Scholar
  18. 18.
    G. H. Bishop andB. Chalmers,Scripta Met. 2 (1968) 133.Google Scholar
  19. 19.
    M. Nottin,Acta Cryst. A26 (1970) 636.Google Scholar
  20. 20.
    K. G. Bansigir andE. E. Schneider,J. Appl. Phys. Suppl. 33 (1962) 383.Google Scholar
  21. 21.
    M. L. Gimpl, A. D. Mcmaster andN. Fuschillo, “Ceramic Microstructures”, edited by R. M. Fulrath and J. A. Pask (John Wiley, New York, 1968) p.253.Google Scholar
  22. 22.
    L. B. Harris,J. Crystal Growth 24/25 (1974) 410.Google Scholar
  23. 23.
    A. J. Moulson, W. R. Phillips andP. Popper, “Special Ceramics 1964”, edited by P. Popper (Academic Press, London, 1965) p. 199.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1976

Authors and Affiliations

  • L. B. Harris
    • 1
  1. 1.School of PhysicsUniversity of New South WalesKensingtonAustralia

Personalised recommendations