Journal of Materials Science

, Volume 11, Issue 2, pp 209–214 | Cite as

The interaction between PTFE and porous metals and metal blacks — rheological characterization and thermal degradation of the polymer

  • K. A. Klinedinst
  • W. M. Vogel
  • P. Stonehart


High molecular weight PTFE (¯Mn=104 to 106) normally exhibits high thermal stability and melt viscosity. When contacted by high surface area metal blacks (Au or Pt) or porous sintered metals (Au or Ni) and heated near the melting temperature, the effective viscosities and thermal stabilities of the PTFE are orders of magnitude lower than those normally exhibited by the polymer. These results are discussed in terms of capillary flow, heterogeneous catalytic degradation, and the diffusion controlled evolution of volatile decomposition products.


Thermal Stability Thermal Degradation High Surface Area PTFE Decomposition Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. P. Bowden andD. Tabor, Proceedings of the 2nd International Congress on Surface Activity, Vol. 3 (Butterworth, London, 1957) p. 386.Google Scholar
  2. 2.
    W. A. Zisman,Advan. Chem. Ser. 43 (1964) 1.Google Scholar
  3. 3.
    H. Schonhorn, Surface Properties, in “Encyclopaedia of Polymer Science and Technology” Vol. 13, edited by H. F. Mark (Wiley, New York, 1970) p. 533.Google Scholar
  4. 4.
    J. F. Lontz, Sintering of Polymer Materials, in “Fundamental Phenomena in the Material Sciences”, Vol. 1, edited by L. J. Bonix and H. H. Hausner (Plenum Press, New Jersey, 1964) p. 25.Google Scholar
  5. 5.
    D. J. Mccane, Tetrafluoroethylene Polymers, in “Encyclopaedia of Polymer Science and Technology”, Vol. 13, edited by H. F. Mark (Wiley, New York, 1970) p. 623.Google Scholar
  6. 6.
    G. Ajroldi, C. Garbuglio andM. Ragazzini,J. Appl. Polymer Sci. 14 (1970) 79.Google Scholar
  7. 7.
    P. P. Luff andM. White,Vacuum 18 (1968) 437.Google Scholar
  8. 8.
    R. D. Collins, P. Fiveash andL. Holland,ibid 19 (1969) 113.Google Scholar
  9. 9.
    S. L. Madorsky, V. E. Hart, S. Straus andV. A. Sedlak,J. Res. Nat. Bur. Stand. 51 (1953) 327.Google Scholar
  10. 10.
    J. C. Siegle, L. T. Muus, T. P. Lin andH. A. Larsen,J. Polymer Sci. A 2 (1964) 391.Google Scholar
  11. 11.
    D. W. Dwight andW. M. Riggs,J. Coll. Interface Sci. 47 (1974) 650.Google Scholar
  12. 12.
    R. E. Florin andL. A. Wall,Macromolecules 3 (1970) 560.Google Scholar
  13. 13.
    A. Barlow, R. S. Lehrle andJ. C. Robb,Makromol. Chemie 54 (1962) 230.Google Scholar
  14. 14.
    R. E. Florin, M. S. Parker andL. A. Wall,J. Res. Nat. Bur. Stand. 70A (1966) 115.Google Scholar
  15. 15.
    C. A. Sperati andH. W. Starkweather, Jun.,Fortschr. Hochpolm.-Forsch. 2 (1961) 465.Google Scholar
  16. 16.
    T. G. Fox andV. R. Allen,J. Chem. Phys. 41 (1964) 344.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1976

Authors and Affiliations

  • K. A. Klinedinst
    • 1
  • W. M. Vogel
    • 1
  • P. Stonehart
    • 1
  1. 1.Advanced Fuel Cell Research Laboratory, Power Systems DivisionUnited Technologies CorporationMiddletownUSA

Personalised recommendations