Journal of Materials Science

, Volume 23, Issue 9, pp 3314–3320 | Cite as

Calorimetric measurements of transformation thermodynamics and thermal efficiencies of NiTi helices

  • A. P. Jardine


The latent heats and thermal efficiency of a NiTi helix as the driving element of a Shape Memory Effect (SME) heat engine was measured by an adiabatic calorimeter capable of simulating a heat engine cycle. The latent heat measurements were found to be highly variable. Thermal efficiencies between 2.6 and 4.5% were measured in the limit of low external stresses needed for reproducible cycling behaviour.


Polymer Thermal Efficiency Calorimeter Latent Heat Memory Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Salzbrenner and M. Cohen, Acta Metall. 24 (1980) 739.Google Scholar
  2. 2.
    H. Pops and N. Ridley, Met. Trans. 1 (1970) 2653.Google Scholar
  3. 3.
    R. J. Wasilewski, ibid. 2 (1971) 2973.Google Scholar
  4. 4.
    M. Ahlers, Scripta Metall. 9 (1975) 7174.Google Scholar
  5. 5.
    H. C. Tong and C. M. Wayman, Acta Metall. 22 (1974) 987.Google Scholar
  6. 6.
    P. Wollants, P. M. de Bonte and J. Roos, Z. Metallkde 70 (1979) 113.Google Scholar
  7. 7.
    H. C. Tong and C. M. Wayman, Scripta Metall. 9 (1975a) 757.Google Scholar
  8. 8.
    B. Cunningham and K. H. G. Ashbee, Acta Metall. 25 (1977) 1315.Google Scholar
  9. 9.
    A. A. Golstaneh, J. Appl. Phys. 49 (1978) 1241.Google Scholar
  10. 10.
    Idem., Acta Metall. 28 (1980) 1427.Google Scholar
  11. 11.
    H. Mohammed and R. Banks, J. Appl. Phys. 50 (1978) 6029.Google Scholar
  12. 12.
    E. Goo and R. Sinclair, Acta. Metall. 33 (1985) 1717.Google Scholar
  13. 13.
    H. C. Ling and R. Kaplow, Met. Trans 11A (1980) 77.Google Scholar
  14. 14.
    T. Honma, M. Nishida and T. Homna, J. de Phys. 43 (1982) C4–225.Google Scholar
  15. 15.
    S. Miyazaki, Y. Ohmi, K. Otsuka and Y. Suzuki, J. Physique, 43 (1982) C4–255.Google Scholar
  16. 16.
    A. P. Jardine, K. H. G. Ashbee and M. Bassett, J. Mater. Sci. (1988) to be published.Google Scholar
  17. 17.
    H. A. Berman, E. D. West and A. G. Rozner, J. Appl. Phys. 38 (1967) 4473.Google Scholar
  18. 18.
    R. Kopa, Proceedings NiTi Heat Engine Conference, Silver Spring, MA, NSWC MP 79-448, edited by D. M. Goldstein and L. J. McNamara, US Dept. of Navy (1979) 8–1.Google Scholar
  19. 19.
    A. P. Jardine, Rev. Sci. Instron. 59 (1988)Google Scholar
  20. 19.a
    A. P. Jardine, PhD thesis, University of Bristol, Bristol (1986).Google Scholar
  21. 20.
    F. E. Wang and W. J. Buehler, Appl. Phys. Lett. 21 (1972) 105.Google Scholar
  22. 21.
    M. Melton and O. Mercier, J. Appl. Phys. 50 (1979) 5747.Google Scholar
  23. 22.
    R. J. Wasilewski, Met. Trans. 2 (1971) 2973.Google Scholar
  24. 23.
    R. J. Wasilewski, S. R. Butler, J. E. Manlon and D. Warden, Met. Trans. 2 (1971) 229.Google Scholar
  25. 24.
    C. M. Hwang, M. Meichle, M. B. Saloman and C. M. Wayman, Phil. Mag. A47 (1983) 9, 31, 177.Google Scholar
  26. 25.
    A. P. Jardine, J. Mater. Sci. 23 (1988) 3314.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • A. P. Jardine
    • 1
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK

Personalised recommendations