Journal of Materials Science

, Volume 23, Issue 9, pp 3129–3136 | Cite as

The elevated-temperature dependence of fracture energy mechanisms of hybrid carbon-glass fibre reinforced composites

  • M. Munro
  • C. P. Z. Lai


The fracture energy of a model hybrid carbon-glass-epoxy resin composite system has been evaluated at room temperature and three elevated temperatures. Values of the work of fracture increased with temperature and glass fibre content with an especially dramatic increase for the high temperature-high glass fibre content specimens. Evaluation of existing microstructural fracture energy mechanisms of fibre debonding, post-debond sliding and fibre pull-out were successful in quantitatively accounting for the work of fracture at room temperature. For the elevated-temperature tests of glass fibres in epoxy resin, it was shown that extensive frictional energy of the nature of the post-debond sliding mechanism is also dissipated after fibre failure.


Epoxy Elevated Temperature Glass Fibre Fracture Energy Model Hybrid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. K. Wells and P. W. R. Beaumont, J. Mater. Sci. 20 (1985) 2735.Google Scholar
  2. 2.
    A. H. Cottrell, Proc. R. Soc. A282 (1964) 2.Google Scholar
  3. 3.
    A. Kelly, ibid. A282 (1964) 63.Google Scholar
  4. 4.
    P. W. R. Beaumont and B. Harris, J. Mater. Sci. 7 (1972) 1265.Google Scholar
  5. 5.
    J. N. Kirk, M. Munro and P. W. R. Beaumont, ibid. 13 (1978) 2197.Google Scholar
  6. 6.
    P. W. R. Beaumont and P. D. Anstice, ibid. 15 (1980) 2619.Google Scholar
  7. 7.
    J. O. Outwater and M. C. Murphy, in Proceedings of 24th Annual Technical Conference, Composites Division, Society of Plastics Industry, New York (1969) Paper IIc.Google Scholar
  8. 8.
    B. Gershom and G. Marom, J. Mater. Sci. 10 (1975) 1549.Google Scholar
  9. 9.
    M. R. Piggott, ibid. 5 (1970) 669.Google Scholar
  10. 10.
    M. Munro and P. W. R. Beaumont, in Proceedings of 3rd International Conference on Mechanical Behaviour of Materials (1979) p. 253.Google Scholar
  11. 11.
    M. Munro, in Proceedings of the Strength and Fracture of Composites — Canadian Fracture Conference 4, Alton, Ontario, Canada, October (1980) p. 94.Google Scholar
  12. 12.
    J. K. Wells and P. W. R. Beaumont, J. Mater. Sci. 17 (1982) 397.Google Scholar
  13. 13.
    C. P. Z. Lai, MASc thesis, University of Ottawa (1983).Google Scholar
  14. 14.
    M. Munro, unpublished results (1986).Google Scholar
  15. 15.
    J. K. Wells and P. W. R. Beaumont, J. Mater. Sci. 20 (1985) 1275.Google Scholar

Copyright information

© Chapman and Hall Ltd 1988

Authors and Affiliations

  • M. Munro
    • 1
  • C. P. Z. Lai
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations