Theoretica chimica acta

, Volume 44, Issue 3, pp 279–291 | Cite as

Symmetry adaption reduced to tabulated quantities

  • Gerhard Fieck
Original Investigations


The aim of this paper is to give an algebraic formula for symmetry-adapted linear combinations avoiding intuitive or laborious projection operator techniques. By utilization of the tabulated Clebsch-Gordan coefficients and surface harmonics of the point-groups the symmetry-adapted linear combinations are given in formula (4). A five-step algorithm is proposed and the example of a tetrahedron worked out. The relation to methods using site symmetry is discussed.

Key words

Symmetry-adaption formula LCAO, symmetry adapted Symmetry coordinates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cotton, F. A.: Chemical applications of group theory, 2nd Ed., Chapter 6. New York: Wiley-Interscience 1971Google Scholar
  2. 2.
    McWeeny, R.: Symmetry, pp. 129, 160 and 190. Oxford: Pergamon Press 1963Google Scholar
  3. 3.
    Melvin, M. A.: Rev. Mod. Phys. 28, 18 (1956)Google Scholar
  4. 4.
    Flurry, R. L.: Theoret. Chim. Acta (Berl.) 31, 221 (1973).Google Scholar
  5. 5.
    Bradley, C. J., Cracknell, A. P.: The mathematical theory of symmetry in solids, Chapter 2. Oxford: Clarendon Press 1972Google Scholar
  6. 6.
    Koster, G. F., Dimmock, J. O., Wheeler, R. G., Statz, H.: Properties of the thirty-two point groups. Cambridge, Mass.: M.I.T. Press 1963Google Scholar
  7. 7.
    Schläfer, H. L., Gliemann, G.: Einführung in die Ligandenfeldtheorie, 421. Frankfurt am Main: Akademische Verlagsgesellschaft 1967Google Scholar
  8. 8.
    Bishop, D. M.: Group theory and chemistry, Chapter 12. Oxford: Clarendon Press 1973Google Scholar
  9. 9.
    Cf. Ref. [3], p. 123, or Ref. [8], p. 124Google Scholar
  10. 10.
    Hamermesh, M.: Group theory. Reading, Mass.: Addison-Wesley 1962Google Scholar
  11. 11.
    Salthouse, J. A., Ware, M. J.: Point group character tables and related data. Cambridge: University Press 1972Google Scholar
  12. 12.
    Griffith, J. S.: The irreducible tensor method for molecular symmetry. Englewood Cliffs, N.J.: Prentice-Hall 1962Google Scholar
  13. 13.
    Ballhausen, C. J., Liehr, A. D.: J. Mol. Spectry. 2, 342 (1958) and Refs. thereinGoogle Scholar
  14. 14.
    Barnes, J. A., Imman, G. W., Hatfield, W. E.: Inorg. Chem. 10, 1725 (1971); Lines, M. E., Ginsberg, A. P., Martin, R. L., Sherwood, R. C.: J. Chem. Phys. 57, 1 (1972)Google Scholar
  15. 15.
    Neumann, M. A., Trinh-Toan, Dahl, L. F.: J. Am. Chem. Soc. 94, 3383 (1972)Google Scholar
  16. 16.
    König, E., Kremer, St.: Theoret. Chim. Acta (Berl.) 32, 27 (1973), Sect. 3Google Scholar
  17. 17.
    Cf. Ref. [10], p. 152Google Scholar
  18. 18.
    Cf. Ref. [6], and Wybourne, B. G.: Classical groups for physicists, p. 222. New York: Wiley 1974Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Gerhard Fieck
    • 1
  1. 1.Institut für ChemieUniversität RegensburgRegensburgFederal Republic of Germany

Personalised recommendations