Skip to main content
Log in

Calculations of the electronic structures of cage molecules using free-electron orbitals as a basis

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

A non-empirical molecular orbital method, particularly suitable for calculations on cage-like molecules, is described. The method uses as basis functions the set of free-electron functions which are the solutions of Schrödinger's equation for an electron confined between two concentric, spherical potential energy barriers. Application of the theory to the SCF calculation of the energies of the delocalized electrons in benzene and tetrasulphur tetranitride shows that the model is capable of interpreting the properties of such systems. However, it does highlight a difficulty in the calculation of excited state energies with one-centre models which appears to be largely unrecognized.

Extension of the method to a consideration of all the valence electrons, using P4 as an example, reveals problems the origin of which is an inadequate treatment of the core electrons. It is suggested that these problems may best be dealt with by use of a suitable pseudo potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hunter, T. F.: Mol. Phys. 14, 171 (1968)

    Google Scholar 

  2. Hunter, T. F.: Phys. Rev. 186, 933 (1969)

    Google Scholar 

  3. Duffey, G. H., Houtman, J. A., Riasky, J.: J. Chem. Phys. 48, 273 (1968)

    Google Scholar 

  4. Hummel, R. L., Ruedenberg, K.: Mod. Quantum Chem. 1, 113 (1965)

    Google Scholar 

  5. Boeyens, J. C. A.: J. Phys. Chem. 71, 2969 (1967)

    Google Scholar 

  6. Rahilly, W. P., Duffey, G. H., Schmidt, J. A.: J. Chem. Phys. 42, 1130 (1965)

    Google Scholar 

  7. Ruedenberg, K., Scherr, C. W.: J. Chem. Phys. 21, 1563 (1953)

    Google Scholar 

  8. Plat, J. R.: J. Chem. Phys. 21, 1957 (1953)

    Google Scholar 

  9. Bayliss, N. S.: J. Chem. Phys. 16, 287 (1948); 17, 1853 (1949); Australian J. Sci. Research A3, 109 (1950)

    Google Scholar 

  10. Pauling, L.: J. Chem. Phys. 4, 673 (1936)

    Google Scholar 

  11. Lonsdale, K.: Proc. Roy. Soc. 159, 149 (1937)

    Google Scholar 

  12. Platt, J. R.: J. Chem. Phys. 17, 484 (1949)

    Google Scholar 

  13. Schmidt, O.: Ber. Deutsche Chem. Gesellschaft 73A, 97 (1940)

    Google Scholar 

  14. Kuhn, H.: Helv. Chim. Acta 31, 1441 (1948)

    Google Scholar 

  15. Banister, A. J.: Nature Phys. Sci. 239, 69 (1972)

    Google Scholar 

  16. Chapman, D., Waddington, T. C.: Trans. Faraday Soc. 58, 1679 (1962)

    Google Scholar 

  17. Hoffmann, R., Gouterman, M.: J. Chem. Phys. 36, 2189 (1962)

    Google Scholar 

  18. Messiah, A.: Quantum mechanics, Vol. I. Amsterdam: North Holland Publishing Co. 1961

    Google Scholar 

  19. Kauzmann, W.: Quantum chemistry. New York: Academic Press 1975

    Google Scholar 

  20. Watson, G. N.: Theory of Bessel functions. Cambridge: University Press 1966

    Google Scholar 

  21. Condon, E. U., Shortley, G. H.: The theory of atomic spectra. Cambridge: University Press 1964

    Google Scholar 

  22. Margenau, H., Murphy, G. M.: The mathematics of physics and chemistry, Vol. I. New York: McGraw-Hill 1956

    Google Scholar 

  23. Kronrod, A. S.: Nodes and weights of quadrature formulas. New York: Consultants Bureau 1965

    Google Scholar 

  24. Carwright, H. M.: Euratom, Eurocopi June 1975

  25. Gleiter, R.: J. Chem. Soc. (a) 3174 (1970)

  26. Mingos, D. M. P.: Nature Phys. Sci. 236, 99 (1972); 239, 16 (1972)

    Google Scholar 

  27. Braterman, P. S.: J. Chem. Soc. 2297 (1965)

  28. Turner, A. G., Mortimer, F.: Inorg. Chem. 5, 906 (1966)

    Google Scholar 

  29. Orchard, A. F.: unpublished results

  30. Ballard, R. E.: Appl. Spectry. Rev. 7, 183 (1973)

    Google Scholar 

  31. Grinter, R.: unpublished results

  32. Hay, P. J., Shavitt, I.: J. Chem. Phys. 60, 2865 (1974)

    Google Scholar 

  33. Peyerimhoff, S. D., Buenker, R. J.: Theoret. Chim. Acta (Berl.) 19, 1 (1970)

    Google Scholar 

  34. Ermler, W. C., Mulliken, R. S., Clementi, E.: J. Am. Soc. 98, 388 (1976)

    Google Scholar 

  35. Murrell, J. N., Harget, A. J.: Semi-empirical self-consistent-field molecular orbital theory of molecules. London: Wiley 1972

    Google Scholar 

  36. Brundle, C. R., Kuebler, N. A., Robin, M. B., Basch, H.: Inorg. Chem. 11, 20 (1972)

    Google Scholar 

  37. Symons, G.: J. Chem. Phys. 55, 756 (1971)

    Google Scholar 

  38. Bishop, D. M.: Advan. Quantum Chem. 3, 25 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartwright, H.M., Bossomaier, T.R.J. & Grinter, R. Calculations of the electronic structures of cage molecules using free-electron orbitals as a basis. Theoret. Chim. Acta 44, 265–278 (1977). https://doi.org/10.1007/BF00551169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551169

Key words

Navigation