Skip to main content
Log in

Geometries of excited states of small polyenes

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The behaviour under rotations around one or two double bonds of the first (π) singlet and triplet states of small conjugated molecules have been investigated using localized Molecular Orbitals. The results obtained with a (σ + π) excitonic matrix are in agreement with previous results obtained with delocalized Molecular Orbitals: 1. the rotation around one double bond is more favorable than two symmetrical rotations around two double bonds, 2. the rotation occurs around one inner double bond rather than around a terminal bond. This work shows the role played by the (σ — π) mixing in the stabilization of the twisted conformations. A further optimization of the bond lengths in the excited singlet and triplet states of butadiene shows that the preferred geometry is a non symmetrical twisted geometry with different lengths for the two C=C double bonds. This “symmetry instability” suggests to introduce a vibronic wave-function in which the various locally excited electronic wave functions are multiplied by different vibrational wave functions corresponding to local deformations of the nuclear skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herzberg,G.: Spectra of diatomic molecules, 2nd Ed. Princeton, N.J.: Van Nostrand 1950.

    Google Scholar 

  2. Walsh,A.D., Warsop,P.A.: Trans. Faraday Soc. 57, 345 (1965)

    Google Scholar 

  3. Walsh, A.D.: J. Chem. Soc. 1953, 2306; Robinson, G.W., Di Giorgio, V.E.: Can. J. Chem. 36, 31 (1958); Callomon,J.M., Innes,K.K.: J. Mol. Spectry. 10, 166 (1963); Job,V.A., Sethuraman,V., Innes,K.K.: J. Mol. Spectry. 30, 365 (1969); Jones,V.T., Coon, J.B.: J. Mol. Spectry. 31, 137 (1969); Dixon,R.N.: Mol. Phys. 12, 83 (1967)

  4. Ingold,C.K., King,G.W.: J. Chem. Soc. (London) 2702 (1953); Innes,K.K.: J. Chem. Phys. 22, 863 (1954).

  5. Mulliken,R.S., Roothaan,C.C.J.: Chem. Rev. 41, 219 (1947); Mulliken,R.S.: Tetrahedron 5, 253 (1959)

    Google Scholar 

  6. Wilkinson,P.G., Mulliken,R.S.: J. Chem. Phys. 23, 1895 (1955)

    Google Scholar 

  7. Mc Diarmid,R., Charney,R.: J. Chem. Phys. 47, 1517 (1967) Mc Diarmid,R.: J. Chem. Phys. 50, 1794 (1969)

    Google Scholar 

  8. Merer,A.J., Mulliken,R.S.: J. Chem. Phys. 50, 1026 (1969)

    Google Scholar 

  9. Baird,N.C., West,R.M.: J. Am. Chem. Soc. 93, 4427 (1971)

    Google Scholar 

  10. Kirby,C.H., Miller,K.: Chem. Phys. Letters 3, 643 (1969)

    Google Scholar 

  11. Kaldor,U., Shavitt,I.: J. Chem. Phys. 48, 191 (1968)

    Google Scholar 

  12. Buenker,R.J.: J. Chem. Phys. 46, 1368 (1968)

    Google Scholar 

  13. Basch,H., McKoy,V.: J. Chem. Phys. 53, 1628 (1970)

    Google Scholar 

  14. Buenker,R.J., Peyerimhoff,S.D., Hsu,H.L.: Chem. Phys. Letters 11, 65 (1971)

    Google Scholar 

  15. Hoffmann,R.: Tetrahedron 22, 521 (1966)

    Google Scholar 

  16. Shih,S., Buenker,R.J., Peyerimhoff,S.: Chem. Phys. Letters 16, 244 (1972)

    Google Scholar 

  17. Simpson,W.T.: J. Am. Chem. Soc. 73, 5363 (1951); 77, 6164 (1955)

    Google Scholar 

  18. Pople,J.A., Walmsey,S.H.: Trans. Faraday Soc. 58, 441 (1962)

    Google Scholar 

  19. Murell, J.N.: J. Chem. Phys. 37, 1162

  20. Langlet,J.: Theoret. Chim. Acta (Berl.) 27, 223 (1972)

    Google Scholar 

  21. Pople,J.A., Santry,O.P., Segal,G.A.: J. Chem. Phys. 43, S 136 (1965); 44, 3289 (1966)

    Google Scholar 

  22. Berry,R.S.: J. Chem. Phys. 38, 1934 (1963)

    Google Scholar 

  23. Robin,M.B., Hart,R.R., Kuebler,N.A.: J. Chem. Phys. 44, 1803 (1966)

    Google Scholar 

  24. Buenker,R.J., Peyerimhoff,S.D., Kammer,W.E.: J. Chem. Phys. 55, 814 (1971)

    Google Scholar 

  25. Pickett,L.W., Muntz,M., McPherson,E.M.: J. Am. Chem. Soc. 73, 4862 (1951); Loefler,B.B., Eberlin,E., Pickett,L.W.: J. Chem. Phys. 28, 345 (1958)

    Google Scholar 

  26. Robin,M.B., Basch,H., Kuebler,N.A., Kaplan,B.E., Meinwald,J.: J. Chem. Phys. 48, 5037 (1968)

    Google Scholar 

  27. Warshel,A., Karplus,M.: J. Am. Chem. Soc. 94, 5612 (1972)

    Google Scholar 

  28. Denis,A., Langtet,J., Malrieu,J.P.: Theoret. Chim. Acta (Berl.) 29, 117 (1973)

    Google Scholar 

  29. Cizek,J., Paldus,J.: J. Chem. Phys. 47, 3976 (1967); 52, 2919 (1970); 53, 82 (1970); Phys. Rev. A2, 2268 (1970)

    Google Scholar 

  30. Prat,R.F.: J. Phys. (Paris) Colloq., 1974 (4) C 4, 69–70 (1971)

  31. Jahn,H.A., Teller,E.: Proc. Roy. Soc. (London) A161, 220 (1937); for applications to organic chemistry see e.g., L. Salem: Molecular orbital theory of conjugated systems, Chapter 8. New York: Benjamin 1966

    Google Scholar 

  32. Daudey,J.P., Malrieu,J. P.: To be published

  33. Diner,S., Malrieu,J.P., Claverie,P.: Theoret. Chim. Acta (Berl.) 13, 1 (1969); Diner, S., Malrieu, J. P., Jordan,F., Gilbert,M.: Theoret. Chim. Acta (Berl.) 15, 100 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langlet, J., Malrieu, J.P. Geometries of excited states of small polyenes. Theoret. Chim. Acta 33, 307–321 (1974). https://doi.org/10.1007/BF00551158

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551158

Key words

Navigation