Fibre Chemistry

, Volume 27, Issue 5, pp 337–342 | Cite as

Immobilization of proteolytic enzymes in carboxymethylchitin films and sponges (review)

  • G. A. Vikhoreva
  • K. P. Khomyakov
  • I. Yu. Sakharov
  • L. S. Gal'braikh


The possibility of immobilization of the proteolytic enzymes collagenase and terrilytin in chitin carboxymethyl ester films and sponges was demonstrated and some characteristics of this process were investigated. It was found that the optimum pH for immobilization of collagenase and terrilytin lies in the range of 6.5–7.5, which approximately corresponds to the optimum pH of the effect of native enzymes. According to the data from in vitro experiments, the activity of the immobilized enzymes at the optimum pH of immobilization is 75–50% for collagenase and 80–90% for terrilytin. An increase in the molecular weight of carboxymethylchitin in the range of 60–600 kilodaltons significantly strengthens the films and simultaneously decreases the activity of the immobilized enzymes, probably due to the stronger binding of the molecules of the enzyme in the matrix of higher molecular weight. In immobilization of enzymes in sponges, the molecular weight of the polymer matrix has no effect on the activity of the immobilized enzymes. Changing the degree of substitution of carboxymethylchitin in the 0.7–1.3 range has almost no effect on the activity of the enzymes immobilized in the films and sponges.


Enzyme Polymer Ester Molecular Weight Immobilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Z. A. Rogovin and L. S. Gal'braikh, Chemical Transformations and Modification of Cellulose [in Russian], Khimiya, Moscow (1979); Z. A. Rogovin and L. S. Galbraich, Die chemische Behandlung und Modifizierung der Zellulose, Georg Thieme Verlag, Stuttgart - New York (1983).Google Scholar
  2. 2.
    A. D. Virnik, N. R. Kil'deeva, et al., Fabrication of Fibre Materials Containing Immobilized Enzymes [in Russian], Chemical Fibre Industry Data Sheets, NIITEKhim, Moscow (1985).Google Scholar
  3. 3.
    W. L. Stanley, G. G. Watters, et al., Biotechnol. Bioeng., 18, 430 (1976).Google Scholar
  4. 4.
    W. L. Stanley, G. G. Watters, et al., Biotechnol. Bioeng., 17, 315 (1975).Google Scholar
  5. 5.
    S. I. Nishimura, N. Nishi, and S. Tokura, Carbohydr. Res., 146, 251 (1986).Google Scholar
  6. 6.
    RF Patent No. 1,666,459.Google Scholar
  7. 7.
    G. A. Vikhoreva, D. Yu. Gladyshev, et al., Cell. Chem. Technol., 26, No. 6, 663 (1992).Google Scholar
  8. 8.
    I. Yu. Sakharov, F. E. Litvin, et al., Biokhimiya, 53, No. 11, 1844 (1988).Google Scholar
  9. 9.
    E. D. Kaverzneva, Prikl. Biokhim. Mikrobiol., 7, No. 2, 225 (1971).Google Scholar
  10. 10.
    W. Brawn and D. Henly, Makromol. Chem., 79, 68 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • G. A. Vikhoreva
  • K. P. Khomyakov
  • I. Yu. Sakharov
  • L. S. Gal'braikh

There are no affiliations available

Personalised recommendations