Theoretica chimica acta

, Volume 58, Issue 3, pp 193–231 | Cite as

Spectral analysis of graphs by cyclic automorphism subgroups

  • Robert A. Davidson
Original Investigations

Abstract

The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.

In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis.

Keywords

Automorphism Group Composite Polymer Spectral Decomposition Great Economy Simple Circuit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Davidson, R. A.: Genesis and synthesis of cospectral and paracospectral graphs. To be published.Google Scholar
  2. 2.
    Davidson, R. A.: Symmetry, spectra, and bigraph division. To be published.Google Scholar
  3. 3.
    Davidson, R. A.: On the symmetry and spectra of molecular graphs. To be published.Google Scholar
  4. 4.
    Heilbronner, E.: Helv. Chim. Acta 37, 921 (1954).Google Scholar
  5. 5.
    Weimin, L.: Scientia Sinica 22, 539 (1979)Google Scholar
  6. 6.
    Au-chin, T., Yuan-sun, K.: Scientia Sinica 19, 207 (1976)Google Scholar
  7. 7.
    Au-chin, T., Yuan-sun, K.: Scientia Sinica 20, 595 (1977)Google Scholar
  8. 8.
    Ledermann, W.: Introduction to group characters. New York: Cambridge Univ. Press. 1977Google Scholar
  9. 9.
    Jansen, L., Boon, M.: Theory of finite groups. Amsterdam: North Holland 1967Google Scholar
  10. 10.
    Hamermesh, M.: Group theory. Reading, Mass.: Addison-Wesley 1962Google Scholar
  11. 11.
    Coleman, A. J. in: Adv. in quantum chem. 4, 83 (1968)Google Scholar
  12. 12.
    Serre, J., in: Molecular orbitals in chemistry, physics and biology, p. 133–149, Lowden, P., Pullman, B., Eds. New York; Academic Press 1964Google Scholar
  13. 13.
    Cotton, F. A.: Chemical applications of group theory. New York: Wiley Interscience 1963Google Scholar
  14. 14.
    Schwenk, A. J., in: Graphs and combinatorics p. 153–172, Bari, R., Harary, F., Eds. New York: Springer-Verlag 1974Google Scholar
  15. 15.
    Schwenk, A. J., Wilson, R. J., in: Selected topics in graph theory, p. 307–336 Beineke, L. W., Wilson, R. J., Eds. New York: Academic Press 1978Google Scholar
  16. 16.
    Streitwieser, Jr., A., Brauman, J. L.: Supplemental tables of molecular orbital calculations. New York: Pergamon Press 1965Google Scholar
  17. 17.
    Heilbronner, E., Straub, P. A.: Hückel molecular orbitals. New York: Springer-Verlag 1966Google Scholar
  18. 18.
    Bochvar, D. A., Stankevich, I. V.: J. Struct. Chem. 8, 841 (1967)Google Scholar
  19. 19.
    Diederich, F., Staab, H. A.: Ang. Chem., Int. Ed. Engl. 17, 372 (1978)Google Scholar
  20. 20.
    Streitwieser, Jr., A.: Molecular orbital theory for organic chemists New York: John Wiley 1961Google Scholar
  21. 21.
    Collatz, L., Sinogowitz, U.: Abh. Math. Sem. Univ. Hamburg 21, 63 (1957)Google Scholar
  22. 22.
    Mowshowitz, A.: J. Combinatorial Theory 12B, 177 (1972)Google Scholar
  23. 23.
    Elspas, B., Turner, J.: J. Combinatorial Theory 9, 297 (1970)Google Scholar
  24. 24.
    Rutherford, D. E.: Royal Soc. Edinburgh 63A, 232 (1950–51)Google Scholar
  25. 25.
    Polansky, O. E.: Monatsheft f. Chem. 91, 916 (1960), Appendix IGoogle Scholar
  26. 26.
    Schwenk, A. J., in: Theory and applications of graphs, p. 516–533 Alavi, Y., Lick, D. R., Eds. New York: Springer-Verlag 1978Google Scholar
  27. 27.
    Randić, M.: Intern. J. Quantum Chem. 15, 663 (1979)Google Scholar
  28. 28.
    Harary, F.: Graph Theory. Reading, Mass.: Addison-Wesley 1969Google Scholar
  29. 29.
    Tutte, W. T.: Connectivity in graphs. Toronto: Univ. of Toronto Press 1966Google Scholar
  30. 30.
    Godsil, C., Holton, D. A., McKay, B., in: Combinatorial mathematics V, p. 111 Little, C. H. C., Ed. New York: Springer-Verlag 1977Google Scholar
  31. 31.
    Rutherford, D. E.: Royal Soc. Edinburgh A62, 229 (1947)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Robert A. Davidson
    • 1
  1. 1.Contribution No. 2780 from the Central Research and Development Department, Experimental StationE. I. du Pont de Nemours and CompanyWilmingtonUSA

Personalised recommendations