Journal of Materials Science

, Volume 4, Issue 9, pp 789–796 | Cite as

The morphology and growth of creep cavities in α-iron

  • A. L. Wingrove
  • D. M. R. Taplin


Electron fractography has been used to study the intergranular cavities formed in alpha-iron during slow tensile deformation at high temperatures. A minimum in ductility is observed at about 700° C: this coincides with conditions where grain-boundary sliding makes a maximum contribution to the overall deformation and where the morphology of the cavities tends to be dendritic and finely terraced. This is explained in terms of the gradient of chemical potential for vacancies which may develop at the cavity periphery during grain-boundary sliding. Under other testing conditions, planar growth is observed and the cavity surface is often faceted.


Polymer Ductility Tensile Deformation Cavity Surface Maximum Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Baluffi and L. L. Siegle, Acta Met. 5 (1957) 449.Google Scholar
  2. 2.
    D. Hull, and D. E. Rimmer, Phil. Mag. 4 (1959) 673.Google Scholar
  3. 3.
    R. T. Ratcliffe and G. W. Greenwood, ibid 12 (1965) 59.Google Scholar
  4. 4.
    M. V. Speight and J. E. Harris, Met. Sci. J. 1 (1967) 83.Google Scholar
  5. 5.
    Y. Ishida and D. Mclean, ibid 171.Google Scholar
  6. 6.
    D. Mclean, Rep. Prog. Phys. 29 (1966) 1.Google Scholar
  7. 7.
    C. J. Herring, J. Appl. Phys. 21 (1950) 437.Google Scholar
  8. 8.
    R. P. Skelton, Phil. Mag. 15 (1967) 405.Google Scholar
  9. 9.
    M. Yamazaki, National Research Institute for Metals, Tokyo, Japan (1968).Google Scholar
  10. 10.
    D. M. R. Taplin, J. Aust. Inst. Met. 10 (1965) 336.Google Scholar
  11. 11.
    A. Gittins and H. D. Williams, Phil. Mag. 16 (1967) 849.Google Scholar
  12. 12.
    I. J. Spark, D. M. R. Taplin, and G. J. Cocks, to be published (1969).Google Scholar
  13. 13.
    D. M. R. Taplin and A. L. Wingrove, Acta Met. 15 (1967) 1231.Google Scholar
  14. 14.
    R. M. Haines, UKAEA/TRG/116/W (1966).Google Scholar
  15. 15.
    W. W. Mullins, and J. P. Hirth, J. Phys. Chem. Solids 24 (1963) 1391.Google Scholar
  16. 16.
    K. Farrell, B. T. M. Loh, and J. O. Stiegler, Trans. ASM 60 (1967) 485.Google Scholar
  17. 17.
    J. A. Malcolm and G. R. Purdy, Trans. AIME 239 (1967) 1391.Google Scholar
  18. 18.
    W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 34 (1963) 323.Google Scholar

Copyright information

© Chapman and Hall 1969

Authors and Affiliations

  • A. L. Wingrove
    • 1
  • D. M. R. Taplin
    • 2
  1. 1.Defence Standards LaboratoriesAlexandriaAustralia
  2. 2.Materials Science LaboratoriesUniversity of WaterlooOntarioCanada

Personalised recommendations