Journal of Materials Science

, Volume 14, Issue 8, pp 1893–1900 | Cite as

Oxidative stabilization of acrylic fibres

Part 3 Morphology of polyacrylonitrile
  • S. B. Warner
  • D. R. Uhlmann
  • L. H. PeeblesJr


A new model for the structure of oriented acrylic fibres is presented. The polyacrylonitrile molecules (or the acrylic sequences in a co-polymer) are suggested to form two distinct regions within a fibril: amorphous (disordered) and partially ordered. In the partially ordered regions, the polymer molecules assume a contorted helical shape to form rods with a diameter averaging about 6.0 Å in which the nitrile units are oriented at various angles to the rod axis, but are spaced irregularly on or near the surface of the rod. The nitrile groups of adjacent rods can interpenetrate to form dipole pairs. The rods are ordered into a liquid crystal-type array, giving in some cases a lamellar-like texture oriented perpendicular to the fibril axis, with the ordered lamellae regions interspersed with amorphous regions. Evidence for the structure is obtained from transmission electron microscopy observations, a transient peak observed in small-angle X-ray scattering when fibres are thermally treated, as well as wide-angle X-ray diffraction patterns. The proposed model is consistent with the absence of a periodic repeat unit along the chain direction, with the h k 0 reflections seen in wide-angle X-ray and electron diffraction, with the spherulitic morphology reported in some studies, and with the platelike morphologies obtained under some conditions of precipitation from dilute solution.


Nitrile Fibril Transmission Electron Microscopy Observation Electron Microscopy Observation Polyacrylonitrile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. R. Bohn, J. R. Schaefgen and W. O. Statton, J. Polymer Sci. 55 (1961) 531.Google Scholar
  2. 2.
    J. Klement and P. Geil, ibid 6 (1968) 1381.Google Scholar
  3. 3.
    V. F. Holland, ibid 43 (1960) 572.Google Scholar
  4. 4.
    W. O. Statton, Ann. N. Y. Acad. Sci. 83 (1959) 27.Google Scholar
  5. 5.
    P. H. Lindenmeyer and R. Hosemann, J. Appl. Phys. 34 (1963) 42.Google Scholar
  6. 6.
    G. W. Urbanczyk, Zeszyty Nauk. Polytech. Lodz, Wlokiennictwo 9 (1962) 79; through Chem. Abstr. 61 (1964) 5836b.Google Scholar
  7. 7.
    G. Hinrichsen and H. Orth, Koll. Z. Z. Polym. 247 (1971) 844.Google Scholar
  8. 8.
    R. Stefani, M. Chevreton, M. Garnier and C. Eyraud, Compt. Rend. Acad. Sci. Paris 251 (1960) 2174.Google Scholar
  9. 9.
    V. F. Holland, S. B. Mitchell, W. L. Hunter and P. H. Lindenmeyer, J. Polymer Sci. 62 (1962) 145.Google Scholar
  10. 10.
    W. Kast, in “Landolt-Bornstein Tabellen”, Vol. 4, 6th Edn., Part 3 (Springer Verlag, Berlin, 1957) p. 1050.Google Scholar
  11. 11.
    J. Schaefer, Macromol. 4 (1971) 105.Google Scholar
  12. 12.
    C. Y. Liang and S. Krimm, J. Polymer Sci. 31 (1958) 513.Google Scholar
  13. 13.
    Y. S. Huang and J. L. Koenig, J. Appl. Spectroscopy 25 (1967) 620.Google Scholar
  14. 14.
    B. G. Colvin and P. Storr, Europ. Polym. J. 10 (1974) 337.Google Scholar
  15. 15.
    D. M. White, J. Amer. Chem. Soc. 82 (1960) 5678.Google Scholar
  16. 16.
    M. Kawasaki, T. Maekawa, K. Hayashi and S. Okamura, J. Macromol. Chem. 1 (1966) 489.Google Scholar
  17. 17.
    R. Chiang, J. H. Rhodes and V. F. Holland, J. Polymer Sci. A 3 (1965) 479.Google Scholar
  18. 18.
    R. Chiang, ibid 1 (1963) 2765.Google Scholar
  19. 19.
    G. Hinrichsen and H. Orth, ibid 9 (1971) 529.Google Scholar
  20. 20.
    G. Hinrichsen, J. Appl. Polymer Sci. 17 (1973) 3305.Google Scholar
  21. 21.
    C. N. Tyson, Nature Phys. Sci. 229 (1971) 121.Google Scholar
  22. 22.
    M. E. Fillery and P. J. Goodhew, ibid 233 (1971) 118.Google Scholar
  23. 23.
    S. B. Warner, L. H. Peebles and D. R. Uhlmann, J. Mater. Sci. 14 (1979) 556.Google Scholar
  24. 24.
    P. E. Slade, Thermochim. Acta 1 (1970) 459.Google Scholar
  25. 25.
    P. J. Flory, “Principles of Polymer Chemistry”, (Cornell University Press, Ithaca, New York, 1953).Google Scholar
  26. 26.
    E. Fischer and G. Schmidt, Angew. Chem. Int. Ed. 1 (1972) 488.Google Scholar
  27. 27.
    D. J. Johnson and C. N. Tyson, Brit. J. Appl. Phys. (J. Phys. D) Ser. 2 2 (1969) 787.Google Scholar
  28. 28.
    W. Watt and W. Johnson, Appl. Polymer Symp. 9 (1969) 215.Google Scholar
  29. 29.
    P. Tucker and W. George, Polymer Eng. Sci. 12 (1972) 364.Google Scholar
  30. 30.
    J. P. Craig, J. P. Knudsen and V. F. Holland, Textile Res. J. 32 (1962) 435.Google Scholar
  31. 31.
    B. D. Cullity, “Elements of X-ray Diffraction” (Addison Wesley, Reading, Mass., 1956) Chap. 3.Google Scholar
  32. 32.
    G. W. Gray and P. A. Winsor, (Eds.), “Liquid Crystals and Plastic Crystals”, Vol. 2 (Halsted Press, New York, 1975).Google Scholar
  33. 33.
    W. R. Krigbaum and N. J. Tokita, J. Polymer Sci. 43 (1960) 467.Google Scholar
  34. 34.
    G. N. Moutaud and R. J. Cauville, Proceedings of the 3rd Carbon Conference on Industrial Carbon and Graphite, London (Society of Chemical Industry, London, 1971) p. 475.Google Scholar
  35. 35.
    W. Ruland, J. Polymer Sci. C 28 (1969) 141.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • S. B. Warner
    • 1
  • D. R. Uhlmann
    • 1
  • L. H. PeeblesJr
    • 2
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.MIT and Office of Naval ResearchBostonUSA

Personalised recommendations