Advertisement

Journal of Materials Science

, Volume 19, Issue 8, pp 2622–2632 | Cite as

Tear strength of polyethylene

  • D. -S. Chiu
  • A. N. Gent
  • J. R. White
Papers

Abstract

The fracture energy of moulded sheets of polyethylene has been found to depend strongly upon the thickness of the sheet, increasing linearly over the range 0.05 to 1.0 mm. This variation is attributed to a dependence of the volume of the plastic zone at the crack tip upont2, wheret is the torn thickness. By extrapolation, threshold values of fracture energy were determined at zero thickness. These represent the strength in the absence of large-scale plastic yielding. The fracture energies of both thin and thick sheets of high-density polyethylene (HDPE) were found to vary strongly with rate of tearing and test temperature, passing through maxima at particular rates and temperatures. This behaviour is attributed to corresponding changes in local ductility. A general correlation was found between the dependence of fracture energy upon tear rate and the dependence of loss modulusE″ upon the frequency ω of small oscillatory deformations. It is concluded that the work of fracture is mainly expended in local yielding at the tear tip, on the scale of single spherulites, about 4μm for HDPE. Annealing HDPE at 120° C reduced the fracture energy of thick sheets to about 10 kJ m−2 but did not greatly alter the threshold strength. In contrast, annealing sheets of LDPE had relatively little effect on the fracture energy at any thickness.

Keywords

Polyethylene Ductility Test Temperature Plastic Zone Fracture Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Ohlberg, J. Roth andR. V. Raff,J. Appl. Polym. Sci. 1 (1959) 114.Google Scholar
  2. 2.
    P. I. Vincent,Polymer 1 (1960) 425.Google Scholar
  3. 3.
    Y. Wada andT. Kasahara,J. Appl. Polym. Sci. 11 (1967) 1661.Google Scholar
  4. 4.
    P. I. Vincent, in “Encyclopedia of Polymer Science and Technology”, Vol. 7, Edited by N. M. Bikales (Interscience Publishers, New York, 1967) pp. 292–361.Google Scholar
  5. 5.
    Y. Wada andA. Nakayama,J. Appl. Poylm. Sci. 15 (1971) 183.Google Scholar
  6. 6.
    A. Peterlin,J. Mater. Sci. 6 (1971) 490.Google Scholar
  7. 7.
    Idem, J. Macromol. Sci. Phys. B8 (1973) 83.Google Scholar
  8. 8.
    D. Weissmann andH. Alexander,Int. J. Polym. Mater. 3 (1974) 33.Google Scholar
  9. 9.
    P. L. Fernando andJ. G. Williams,Polym. Eng. Sci. 20 (1980) 215.Google Scholar
  10. 10.
    N. Brown andI. M. Ward,J. Mater. Sci. 18 (1983) 1405.Google Scholar
  11. 11.
    G. E. Anderton andL. R. G. Treloar,ibid. 6 (1971) 562.Google Scholar
  12. 12.
    G. L. A. Sims,ibid. 10 (1975) 647.Google Scholar
  13. 13.
    E. H. Andrews, “Fracture in Polymers” (American Elsevier, New York, 1961).Google Scholar
  14. 14.
    D. P. Isherwood andJ. G. Williams,Eng. Fract. Mech. 10 (1978) 887.Google Scholar
  15. 15.
    R. Chiang andP. J. Flory,J. Amer. Chem. Soc. 83 (1961) 2857.Google Scholar
  16. 16.
    F. C. Stehling andL. Mandelkern,Macromolecules 3 (1970) 242.Google Scholar
  17. 17.
    N. Brown andI. M. Ward,J. Mater. Sci. 18 (1983) 1405.Google Scholar
  18. 18.
    R. S. Rivlin andA. G. Thomas,J. Polym. Sci. 10 (1953) 291.Google Scholar
  19. 19.
    R. P. Kambour andS. Miller,J. Mater. Sci. 11 (1976) 823.Google Scholar
  20. 20.
    Idem, ibid. 11 (1976) 1220.Google Scholar
  21. 21.
    M. Parvin andJ. G. Williams,Int. J. Fract. 11 (1975) 93.Google Scholar
  22. 22.
    K. Nikpur andJ. G. Williams,J. Mater. Sci. 14 (1979) 467.Google Scholar
  23. 23.
    O. F. Yap, Y. W. Mai andB. Cotterell,ibid. 18 (1983) 657.Google Scholar
  24. 24.
    A. G. Thomas,J. Polym. Sci. 18 (1955) 177.Google Scholar
  25. 25.
    G. J. Lake andA. G. Thomas,Proc. Roy. Soc. Lond. A300 (1967) 108.Google Scholar
  26. 26.
    H. K. Mueller andW. G. Knauss,Trans. Soc. Rheol. 15 (1971) 217.Google Scholar
  27. 27.
    A. N. Gent andR. H. Tobias,J. Polym. Sci. Polym. Phys. Ed. 20 (1982) 2317.Google Scholar
  28. 28.
    M. Takayanagi,J. Macromol. Sci. Phys. B9 (1974) 391.Google Scholar
  29. 29.
    E. H. Andrews andB. J. Walker,Proc. Roy. Soc. Lond. A325 (1971) 57.Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • D. -S. Chiu
    • 1
  • A. N. Gent
    • 1
  • J. R. White
    • 1
  1. 1.Institute of Polymer ScienceThe University of AkronAkronUSA

Personalised recommendations