Journal of Materials Science

, Volume 19, Issue 8, pp 2570–2574 | Cite as

A mathematical description of transient crack growth behaviour in glass

  • M. K. Ferber
Papers

Abstract

Transient crack growth behaviour resulting from time-dependent changes in crack-tip radius can occur near the fatigue limit. In the present work, mathematical expressions describing this transient behaviour are developed assuming that a dissolution reaction is responsible for changes in crack geometry. An elliptical crack is analysed because of its mathematical simplicity. The theoretical model slightly underestimates the extent of crack-tip blunting occurring below the fatigue limit. However, the predicted transient behaviour associated with the crack-tip sharpening processes which take place above the fatigue limit compares favourably with experimental data for glass.

Keywords

Polymer Experimental Data Fatigue Theoretical Model Growth Behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Wiederhorn,Int. J. Fract. Mech. 4 (1968) 171.Google Scholar
  2. 2.
    Idem, in “Fracture Mechanics of Ceramics”, Vol. 2, Edited by R. Bradt, D. P. Hasselman and F. F. Lange (Plenum, New York, 1974) pp. 613–646.Google Scholar
  3. 3.
    J. B. Wachtman, Jr.,J. Amer. Ceram. Soc. 57 (1974) 509.Google Scholar
  4. 4.
    B. J. S. Wilkins andR. Dutton,ibid. 59 (1976) 108.Google Scholar
  5. 5.
    R. J. Charles,J. Appl. Phys. 29 (1958) 1549.Google Scholar
  6. 6.
    S. M. Wiederhorn andL. H. Bolz,J. Amer. Ceram. Soc. 53 (1970) 543.Google Scholar
  7. 7.
    W. B. Hillig andR. J. Charles, “High-Strength Materials,” edited by V. F. Zackay (John Wiley and Sons, New York, 1965) pp. 681–705.Google Scholar
  8. 8.
    C. F. Inglis,Trans. Inst. Naval Architecture, London,55 (1913) 219.Google Scholar
  9. 9.
    T. A. Michalske, in “Fracture Mechanics of Ceramics,” Vol. 5, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) pp. 277–290.Google Scholar
  10. 10.
    S. Ito andM. Tomozawa,Comm. Amer. Ceram. Soc. 11 (1981) 160.Google Scholar
  11. 11.
    D. Hubbard andE. H. Hamilton,J. Res. Nat. Bur. Stand. 27 (1941) 143.Google Scholar
  12. 12.
    S. D. Brown,J. Amer. Ceram. Soc. 62 (1979) 515.Google Scholar
  13. 13.
    T. A. Michalske andS. W. Frieman,ibid. 66 (1983) 284.Google Scholar
  14. 14.
    H. Eyring andE. M. Eyring, in “Modern Chemical Kinetics,” edited by H. H. Sisler and C. A. Vanderwerf (Reinhold, New York, 1962) Ch. 4.Google Scholar
  15. 15.
    E. R. Fuller, private communication (1983).Google Scholar
  16. 16.
    M. G. Schwabel andV. D. Frechette, Paper 36-B-78, Presented at the 80th Annual Meeting of the American Ceramic Society, Detroit, Michigan, May 6–11, 1978,Amer. Ceram. Soc. Bull. 57 (1978) 307.Google Scholar
  17. 17.
    M. G. Schwabel, Ph.D. Thesis, New York State College of Ceramics, Alfred University, Alfred, NY (1978).Google Scholar
  18. 18.
    S. Ito andM. Tomozawa,J. Amer. Ceram. Soc. 65 (1982) 368.Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • M. K. Ferber
    • 1
  1. 1.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations