Journal of Materials Science

, Volume 15, Issue 10, pp 2591–2596 | Cite as

Plastic bending of CdxHg1−xTe



Preliminary results are reported of three-point plastic bending tests on Cd x Hg1−xTe single crystal samples, for an x value of about 0.2, conducted in air at strain rates of the order of 10−5 sec−1, and at temperatures in the range 303 K (30° C) to 363 K (90° C) (in the region of 0.35T m 0 , where T m 0 is the absolute melting point). Single crystal samples were cut from polycrystalline ingots, and the orientation, although measured in each case, was not consistent from sample to sample, being determined by the available grain shape. The stress-strain curves resemble those found for Group IV and III–V semiconductors. They display a yield drop, followed by a region of zero work hardening. All tests were stopped in this region, and in no case did the overall glide strain exceed 3%. The upper and lower yield stresses (outer fibre glide stress values) varied from 16 MN m−2 and 10 MN m−2, respectively, at 363 K (90° C) to 24 MN m−2 and 17 MN m−2, respectively, at 303 K (30° C).


Polymer Melting Point Work Hardening Lower Yield Grain Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Haasen, Acta Met. 5 (1957) 598.Google Scholar
  2. 2.
    H. Alexander, J. de Physique Colloque C6 40 (1979) 1.Google Scholar
  3. 3.
    B. E. Bartlett, J. Deans and P. C. Ellen, J. Mater. Sci. 4 (1969) 266.Google Scholar
  4. 4.
    B. P. Koman and M. V. Pashovskii, Ukrainskii Fizicheskii Zhurnal 23 (1978) 58.Google Scholar
  5. 5.
    I. V. Kurilo, I. M. Spitkovskii and A. D. Schneider, Izv. V.U.Z. Fizik 9 (1974) 130.Google Scholar
  6. 6.
    M. Brown and A. F. W. Willoughby, J. de Physique, Colloque C6 40 (1979) 151.Google Scholar
  7. 7.
    S. Cole, unpublished work (1978).Google Scholar
  8. 8.
    P. I. Baranskii, Yu. N. Gavrilyuk, A. I. Elizarov and V. A. Kulik, Soviet Phys. Semiconductors 11 (1977) 916.Google Scholar
  9. 9.
    E. L. Polisar, N. M. Boinikh, G. V. Indenbaum, A. V. Vanyukov and V. P. Schastlivii, Izv. V.U.Z. Fizik. 6 (1968) 81.Google Scholar
  10. 10.
    L. Carlsson and C. N. Ahlquist, J. Appl. Phys. 43 (1972) 2529.Google Scholar
  11. 11.
    R. L. Bell and W. Bonfield, Phil. Mag. 9 (1964) 9.Google Scholar
  12. 12.
    J. R. Patel and A. R. Chaudhuri, J. Appl. Phys. 34 (1963) 2788.Google Scholar
  13. 13.
    H. Shimizu and K. Sumino, Phil. Mag. 32 (1975) 123, 143.Google Scholar
  14. 14.
    H. Gottschalk, G. Patzer and H. Alexander, Phys. Stat. Sol. a 45 (1978) 207.Google Scholar
  15. 15.
    H. Alexander and P. Haasen, Solid State Phys. 22 (1968) 27.Google Scholar
  16. 16.
    M. Mihara and T. Ninomiya, Phys. Stat. Sol. a 32 (1975) 43.Google Scholar
  17. 17.
    S. K. Choi, M. Mihara and T. Ninomiya, Japanese J. Appl. Phys. 17 (1978) 329.Google Scholar
  18. 18.
    K. Maeda, K. Nakagawa and S. Takeuchi, Phys. Stat. Sol. a 48 (1978) 587.Google Scholar
  19. 19.
    E. L. Hall and J. B. Vandersande, J. Amer. Ceram. Soc. 61 (1978) 417.Google Scholar
  20. 20.
    R. L. Bell and A. F. W. Willoughby, J. Mater. Sci. 1 (1966) 219.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • S. Cole
    • 1
  1. 1.Department of Metallurgy and Materials ScienceImperial CollegeLondonUK

Personalised recommendations