Skip to main content
Log in

Size effect on the strength of glassy carbon

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three-point bend tests were conducted on three sets of commercial glassy carbon specimens having volumes of V, 2V, and 4V, and mean strengths of these specimens decreased with increasing volume (from 37 to 32 to 28×103 psi). These results are in good agreement with Weibull predictions of σ(V)=1.12σ(2V)=1.26σ(4V), which are based on a uniform distribution of flaws throughout a volume of material that is characterized by a Weibull modulus of m=6.0. Moreover, the resulting strength formulation for any volume V(in.3), σ=6 V −1/6×103 psi, correlates well with widerspread data from other sources. In common with other brittle materials, glassy carbon satisfies the crack bifurcation relationship of σr 1/2=constant, and this was used to provide additional support for the validity of the volume-dependent Weibull theory. Failures in this material usually originated at interior spherical pores, and the mean size of these flaws for different sets of specimens increased with test volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Bullock, J. Comp. Mater. 8 (1974) 200.

    Google Scholar 

  2. D. R. Platts and H. P. Kirchner, J. Materials 6 (1971) 48.

    Google Scholar 

  3. Ö. Vardar and I. Finnie, Int. J. Fract. 11 (1975) 495.

    Google Scholar 

  4. M. C. Shaw, P. M. Braiden and G. J. Desalvo, Trans. ASME, J. Eng. Ind. 97 (1975) 77.

    Google Scholar 

  5. D. G. S. Davies, Proc. Brit. Ceram. Soc. 22 (1973) 429.

    Google Scholar 

  6. M. Knight and H. T. Hahn, J. Comp. Mater. 9 (1975) 77.

    Google Scholar 

  7. G. K. Bansal, W. H. Duckworth and D. E. Niesz, J. Amer. Ceram. Soc. 59 (1976) 472.

    Google Scholar 

  8. P. Marshall and E. K. Priddle, Carbon 11 (1973) 627.

    Google Scholar 

  9. R. J. Price and H. R. W. Cobb, “Application of Weibull Statistical Theory to the Strength of Reactor Graphite”, in Proceedings of the Conference on Continuum Aspects of Graphite Design, Gatlinburg, Tenn., 9–12 November (1970) (USAEC Document No. CONF-701105) pp. 547–67.

  10. R. J. Price, “Statistical Study of the Strength of Near-Isotropic Graphite”, in Extended Abstracts for the 12th Biennial Conference on Carbon, the American Carbon Society, Pittsburgh, Pa., 28 July to 1 August (1975) pp. 145–6.

    Google Scholar 

  11. I. B. Mason, “The Strength of Commercial Graphite”, in Proceedings of the Fifth Conference on Carbon, Vol. 2 (Pergamon Press, New York, 1960) pp. 597–610.

    Google Scholar 

  12. R. Krefeld and V. Lungagnani, “Application of Weibull's Theory to the Strength of Irradiated Isotropic Graphite”, in Summary of Papers for the 9th Biennial Conference on Carbon, the American Carbon Society, Boston, Mass., 16–20 June (1969) p. 106.

    Google Scholar 

  13. F. Lanza and H. Burg, “Investigation of the Volume Effect on Mechanical Properties of Various Industrial Graphites”, in Extended Abstracts for the 11th Biennial Conference on Carbon, the American Carbon Society, Gatlinburg, Tenn., 4–8 June (1973) pp. 223–4.

    Google Scholar 

  14. J. Amesz, J. Donea and F. Lanza, “Comparison of Mechanical Properties in Bending and Tensile Tests for Industrial Graphites”, ibid. pp. 221–3.

    Google Scholar 

  15. R. Krefeld, G. Linkenheil and J. Meeldijk, “The Effect on High Temperature Fast Neutron Irradiation on the Distribution Functions of Strength of Some Nuclear Graphites”, in Summary of Papers for the 10th Biennial Conference on Carbon, the American Carbon Society, Bethlehem, Pa., 27 June–2 July (1971) pp. 179–80.

    Google Scholar 

  16. G. K. Bansal, W. Duckworth and D. E. Niesz, Amer. Ceram. Soc. Bull. 55 (1976) 289.

    Google Scholar 

  17. D. Lewis and S. M. Oyler, J. Amer. Ceram. Soc. 59 (1976) 507.

    Google Scholar 

  18. J. E. Brocklehurst and M. I. Darby, Mat. Sci. Eng. 16 (1974) 91.

    Google Scholar 

  19. D. P. H. Hasselman, G. B. Kenney and K. R. Mckinney, J. Amer. Ceram. Soc. 58 (1975) 452.

    Google Scholar 

  20. J. E. Ritter, Jun. and K. Jakus, ibid. 60 (1977) 192.

    Google Scholar 

  21. W. P. Minnear and R. C. Bradt, ibid. 58 (1975) 345.

    Google Scholar 

  22. A. W. Thompson, Scripta Met. 8 (1974) 145.

    Google Scholar 

  23. D. Lewis, Amer. Ceram. Soc. Bull. 54 (1975) 310.

    Google Scholar 

  24. J. B. Barr, S. Chwastiak and R. Didchenko, “High Strength Carbon Fibers from Mesophase Pitch”, in Extended Abstracts for the 13th Biennial Conference on Carbon, the American Carbon Society, Irvine, Ca., 18–22 July (1977) pp. 96–7.

    Google Scholar 

  25. R. Bacon and W. A. Schalamon, in “High Temperature Resistant Fibers from Organic Polymers”, edited by J. Preston (Interscience, New York, 1969) pp. 285–91.

    Google Scholar 

  26. B. J. S. Wilkins, J. Amer. Ceram. Soc. 54 (1971) 593.

    Google Scholar 

  27. P. H. Hodkinson and J. S. Nadeau, J. Mater. Sci. 10 (1975) 846.

    Google Scholar 

  28. J. S. Nadeau, J. Amer. Ceram. Soc. 57 (1974) 303.

    Google Scholar 

  29. F. J. Schoen, Carbon 11 (1973) 413.

    Google Scholar 

  30. S. J. Baker and W. Bonfield, J. Mater. Sci. 10 (1975) 1015.

    Google Scholar 

  31. J. L. Kaae, “The Effect of Microporosity on Graphitizability of Glassy Carbon”, pp. 414–15 in [24].

  32. J. S. Nadeau, J. Amer. Ceram. Soc. 56 (1973) 467.

    Google Scholar 

  33. E. Fitzer, W. Schaefer and S. Yamada, Carbon 7 (1969) 643.

    Google Scholar 

  34. F. M. Ernsberger, Amer. Ceram. Soc. Bull. 54 (1975) 533.

    Google Scholar 

  35. E. Fitzer and W. Schaefer, Carbon 8 (1970) 353.

    Google Scholar 

  36. F. M. Ernsberger, Amer. Ceram. Soc. Bull. 52 (1973) 240.

    Google Scholar 

  37. J. C. Bokros and R. J. Price, Carbon 3 (1966) 503.

    Google Scholar 

  38. J. L. Kaae, ibid 10 (1972) 691.

    Google Scholar 

  39. Idem, J. Nucl. Mater. 46 (1973) 121.

    Google Scholar 

  40. J. L. Kaae and T. D. Gulden, J. Amer. Ceram. Soc. 54 (1971) 605.

    Google Scholar 

  41. W. Weibull, Ingenioersvetenskapsakad. Handl. 151 (1939) 45 pp.

    Google Scholar 

  42. W. B. Hall, L. R. Johnson and M. W. Parker, Amer. Ceram. Soc. Bull. 55 (1976) 1004.

    Google Scholar 

  43. W. H. Duckworth, J. Amer. Ceram. Soc. 34 (1951) 1.

    Google Scholar 

  44. R. G. Hoagland, C. W. Marshall and W. H. Duckworth, ibid 59 (1976) 189.

    Google Scholar 

  45. B. W. Rosen and N. F. Dow, in “Fracture”, Vol. VII, edited by H. Liebowitz (Academic Press, New York, 1972) pp. 611–74.

    Google Scholar 

  46. N. A. Weil and I. M. Daniel, J. Amer. Ceram. Soc. 47 (1964) 286.

    Google Scholar 

  47. J. W. Heavens and P. N. Murgatroyd, ibid. 53 (1970) 503.

    Google Scholar 

  48. K. Kawamura and G. M. Jenkins, J. Mater. Sci. 7 (1972) 1099.

    Google Scholar 

  49. J. L. Kaae, J. Biomed. Mater. Res. 6 (1972) 279.

    Google Scholar 

  50. J. J. Mecholsky, R. W. Rice and S. W. Freiman, J. Amer. Ceram. Soc. 57 (1974) 440.

    Google Scholar 

  51. W. V. Kotlensky and H. E. Martens, “Tensile Behavior of Glassy Carbon at Temperatures up to 2900° C”; paper V-2 in Symposium on Carbon, Carbon Society of Japan, Tokyo, 20–23 July, (1964).

    Google Scholar 

  52. W. C. Levengood, J. Appl. Phys. 29 (1958) 820.

    Google Scholar 

  53. E. B. Shand, J. Amer. Ceram. Soc. 42 (1959) 474.

    Google Scholar 

  54. M. J. Kerper and T. G. Scuderi, Amer. Ceram. Soc. Bull. 43 (1964) 622.

    Google Scholar 

  55. J. W. Johnson and D. G. Holloway, Phil. Mag. 14 (1966) 731.

    Google Scholar 

  56. J. Congleton and N. J. Petch, ibid 16 (1967) 749.

    Google Scholar 

  57. H. P. Kirchner and R. M. Gruver, ibid 27 (1973) 1433.

    Google Scholar 

  58. H. P. Kirchner, R. M. Gruver and W. A. Sotter, J. Amer. Ceram. Soc. 58 (1975) 188.

    Google Scholar 

  59. J. J. Mecholsky, S. W. Freiman and R. W. Rice, J. Mater. Sci. 11 (1976) 1310.

    Google Scholar 

  60. G. K. Bansal and W. H. Duckworth, J. Amer. Ceram. Soc. 60 (1977) 304.

    Google Scholar 

  61. G. K. Bansal, Phil. Mag. 35 (1977) 935.

    Google Scholar 

  62. M. J. Kerper and T. G. Scuderi, Amer. Ceram. Soc. Bull. 45 (1966) 1065.

    Google Scholar 

  63. A. A. Griffith, Phil. Trans. Roy. Soc. London 221A (1920) 163.

    Google Scholar 

  64. D. A. Krohn and D. P. H. Hasselman, J. Amer. Ceram. Soc. 54 (1971) 411.

    Google Scholar 

  65. B. Cotterell, Int. J. Fract. 1 (1965) 96.

    Google Scholar 

  66. E. H. Yoffe, Phil. Mag. 42 (1951) 739.

    Google Scholar 

  67. J. W. Johnson and D. G. Holloway, ibid 17 (1968) 899.

    Google Scholar 

  68. J. E. Field, Contemp. Phys. 12 (1971) 1.

    Google Scholar 

  69. L. R. F. Rose, Int. J. Fract. 12 (1976) 799.

    Google Scholar 

  70. K. R. Mckinney, J. Amer. Ceram. Soc. 56 (1973) 225.

    Google Scholar 

  71. D. C. Cranmer, R. E. Tressler and R. C. Bradt, ibid. 60 (1977) 230.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, R.E., Kaae, J.L. Size effect on the strength of glassy carbon. J Mater Sci 14, 920–930 (1979). https://doi.org/10.1007/BF00550723

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550723

Keywords

Navigation