Skip to main content
Log in

Nucleation of recrystallization in compressed aluminium: studies by electron microscopy and Kikuchi diffraction

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Following the earlier investigation of recrystallization of aluminium by Bellier and Doherty [1] by transmission Kossel diffraction, the details of the nucleation process were studied by transmission electron microscopy and Kikuchi electron diffraction. This showed that nucleation appeared to occur via a sub-grain coalescence process that occurred selectively at deformation bands and at deformation band, grain boundary junctions. Nucleation occurred only at grain boundaries and at deformation bands. The condition for continued growth, of enlarged sub-grains of length 2L, along the grain boundary L>2r(γ s/γ g) where γ s is the sub-boundary energy and γ g the grain-boundary energy, was found to be obeyed. The values of the stored energy calculated from the measured sub-grain sizes and misorientations were less than the reported experimental value, indicating that in as-deformed aluminium the dislocation arrays in the sub-boundaries may not have the lowest energy structure assumed in the calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Bellier and R. D. Doherty, Acta Met. 25 (1977) 521.

    Google Scholar 

  2. C. S. Barrett, “Structure of Metals” (2nd Edn. McGraw Hill, 1952) pp. 372, 453.

  3. H. Hu, “Recovery and Recrystallization of Metals”, Edited by L. Himmel, (Gordon and Breach, New York, 1963) p. 311.

    Google Scholar 

  4. I. L. Dillamore, P. L. Morris, C. J. E. Smith and W. B. Hutchinson, Proc. Roy. Soc. 329A (1972) 405.

    Google Scholar 

  5. G. I. Taylor, J. Inst. Metals 62 (1938) 307.

    Google Scholar 

  6. P. A. Beck and P. R. Sperry, J. Appl. Phys. 21 (1950) 150.

    Google Scholar 

  7. J. E. Bailey and P. B. Hirsch, Proc. Roy. Soc. 267A (1962) 11.

    Google Scholar 

  8. H. Fujita, J. Phys. Soc. Japan 16 (1961) 397.

    Google Scholar 

  9. J. C. M. Li, J. Appl. Phys. 33 (1962) 2958.

    Google Scholar 

  10. R. D. Doherty and R. W. Cahn, J. Less Common Metals 28 (1972) 279.

    Google Scholar 

  11. R. H. Goodenow, Trans. Quart. ASM 59 (1966) 804.

    Google Scholar 

  12. N. Ryum, Acta Met. 17 (1969) 831.

    Google Scholar 

  13. J. W. Edington, “Practical Electron Microscopy in Materials Science” Vol. 2, (Macmillan, 1975).

  14. R. Pond, private communication.

  15. P. Faivre, D. Phil. Thesis, University of Sussex (1973).

  16. A. W. Agar, Brit. J. Appl. Phys. 11 (1960) 185.

    Google Scholar 

  17. P. Faivre, J. Appl. Crystallogr. 8 (1975) 356.

    Google Scholar 

  18. A. Kriesler and R. D. Doherty, Metal Sci (to be published).

  19. R. K. Ray, W. B. Hutchinson and B. J. Duggan, Acta Met. 23 (1975) 831.

    Google Scholar 

  20. Y. Inokuti and R. D. Doherty, Texture 2 (1977) 143.

    Google Scholar 

  21. Idem, Acta Met. 26 (1978) 61.

    Google Scholar 

  22. J. E. Hilliard, “Recrystallization, Grain Growth and Texture”, (ASM Metals Pal. Ohio. 1966) p. 267.

    Google Scholar 

  23. S. P. Bellier, D. Phil. Thesis, University of Sussex (1971).

  24. W. A. Johnson and R. W. Mehl, Trans. AIME 135 (1939) 416.

    Google Scholar 

  25. J. W. Cahn, Acta Met. 4 (1956) 449.

    Google Scholar 

  26. J. H. Cairns, J. Clough, M. A. P. Dewey and J. Nutting, J. Inst. Metals 99 (1971) 93.

    Google Scholar 

  27. R. D. Doherty, Metal Sci. J. 8 (1974) 132.

    Google Scholar 

  28. R. D. Doherty, in “Recrystallization of Metallic Materials”, 2nd Edn. Edited by F. Haessner (Rieder-Verlag, Stuttgart, 1978).

    Google Scholar 

  29. K. T. Aust and J. W. Rutter, “Recovery and Recrystallization of Metals”, edited by L. Himmel (Gordon and Breach, New York, 1963) p. 131.

    Google Scholar 

  30. K. Lücke, R. Rixen and M. Senna, Acta Met. 24 (1976) 103.

    Google Scholar 

  31. R. Viswanathan and C. L. Bauer, ibid. 21 (1973) 1099.

    Google Scholar 

  32. N. A. Gjostein and F. N. Rhines, ibid. 7 (1959) 319.

    Google Scholar 

  33. H. U. Åstom, ibid. 3 (1955) 508.

    Google Scholar 

  34. E. C. W. Perryman, Trans. AIME 203 (1955) 1053.

    Google Scholar 

  35. R. E. Doherty and J. W. Martin, J. Inst. Metals 91 (1963) 332.

    Google Scholar 

  36. R. D. Doherty, Thesis, Department of Metallurgy, University of Oxford (1964).

  37. M. F. Ashby, Phil. Mag. 21 (1970) 399.

    Google Scholar 

  38. C. J. E. Smith and I. L. Dillamore, Metal Sci. J. 4 (1970) 161.

    Google Scholar 

  39. J. W. Martin and R. D. Doherty, “Stability of Microstructure in Metallic Systems” (C. U. P. 1976) p. 236.

  40. T. S. Lundy and J. F. Murdoch, J. Appl. Phys. 33 (1963) 1671.

    Google Scholar 

  41. J. Friedel, “Dislocations” (Pergamon Press, 1964) pp. 109 and 297.

  42. W. Roberts and B. Lehtinen, Phil. Mag. 26 (1972) 1153.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faivre, P., Doherty, R.D. Nucleation of recrystallization in compressed aluminium: studies by electron microscopy and Kikuchi diffraction. J Mater Sci 14, 897–919 (1979). https://doi.org/10.1007/BF00550722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550722

Keywords

Navigation