Skip to main content
Log in

The internal friction of glasses

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Basic fundamentals of the elastic behaviour of a standard linear solid and the internal friction technique based on this model are briefly described. The internal friction (Q −1) caused by various thermally activated processes in vitreous solids are reviewed for several glass compositions in relation to ionic mobility and other relevant properties. Similar relaxation mechanisms characterize many vitreous solids. The relaxation of alkali ions is essentially independent of the glass network former and has an activation energy of 15 to 25 kcal mol−1. Other processes like the interaction of oxygen ions and protons, alkali ions and protons, mixed-alkali ion interaction and the motion of single bonded oxygen ions have an activation energy of 30 to 40 kcal mol−1. The activation energy for relaxation of the glass network is 100 to 120 kcal mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Debye, “Polar Molecules” (Chemical Catalogue Co., New York, 1929).

    Google Scholar 

  2. K. W. Wagner, Ann. Physik 40 (1913) 817.

    Google Scholar 

  3. C. Zener, “Elasticity and Anelasticity of Metals” (University of Chicago Press, Chicago, Ill., 1948).

    Google Scholar 

  4. H. Rötger, Glastech. Ber. 19 (1941) 192.

    Google Scholar 

  5. A. S. Nowick and B. S. Berry, “Anelastic Relaxation in Crystalline Solids” (Academic Press, New York, 1972).

    Google Scholar 

  6. M. Callens-Raadschelders, R. Debatist and R. Gevers, J. Mater. Sci. 12 (1977) 251.

    Google Scholar 

  7. J. V. Fitzgerald, J. Amer. Ceram. Soc. 34 (1951) 314.

    Google Scholar 

  8. K. A. Wolf, Zeit. für Elektrochem. 65 (1961) 604.

    Google Scholar 

  9. J. J. Benbow and D. J. C. Wood, Phys. Chem. Glass 4 (1963) 161.

    Google Scholar 

  10. N. F. Astbury and W. R. Davis, Trans. Brit. Ceram. Soc. 63 (1964) 1.

    Google Scholar 

  11. J. J. Benbow, J. Sci. Instrum. 30 (1953) 412.

    Google Scholar 

  12. S. L. Blum, J. Amer. Ceram. Soc. 38 (1955) 205.

    Google Scholar 

  13. J. M. McCormick, ibid. 38 (1955) 288.

    Google Scholar 

  14. R. L. Stephenson and H. E. McCoy, J. Sci. Instrum. 39 (1962) 54.

    Google Scholar 

  15. R. G. Harlow, T. Hinton and J. G. Rider, ibid. 39 (1962) 598.

    Google Scholar 

  16. M. C. DeMorton, S. A. Lott and D. F. Stanisby, ibid. 40 (1963) 441.

    Google Scholar 

  17. T. F. Miller and D. E. Day, “Construction and Calibration of an Inverted Torsion Pendulum for Measuring Internal Friction of Glass”, Technical Report No. 1 (1965) University of Missouri, Rolla, Mo, USA.

    Google Scholar 

  18. L. Vaugin, F. C. Breton and P. Gobin, Verre et. Refr. 23 (1969) 174.

    Google Scholar 

  19. P. L. Kirby, J. Soc. Glass Technol. 37 (1953) 6; ibid. 38 (1954) 383; ibid. 38 (1954) 584.

    Google Scholar 

  20. G. M. Bartenev, “Structure and Mechanical Properties of Inorganic Glasses” (Wolters-Noordhoff, Groningen, 1970).

    Google Scholar 

  21. A. Dietzel and E. Deeg, Glastech. Ber. 27 (1954) 105.

    Google Scholar 

  22. K. E. Forry, J. Amer. Ceram. Soc. 40 (1957) 90.

    Google Scholar 

  23. E. Deeg, Glastech. Ber. 31 (1958) 1, 85, 124, 229.

    Google Scholar 

  24. J. Mohyuddin and R. W. Douglas, Phys. Chem. Glass 1 (1960) 71.

    Google Scholar 

  25. O. V. Mazurin, XI International Congress on Glass, Prague 1977, edited by J. Götz (čvts-Dum Techniky, Praha, 1977) pp. 130–69.

    Google Scholar 

  26. H. E. Bömmel, W. P. Mason and A. W. Warner, Phys. Rev. 102 (1956) 64.

    Google Scholar 

  27. R. E. Strakna and H. T. Savage, J. Appl. Phys. 35 (1964) 1445.

    Google Scholar 

  28. P. W. Graham and G. E. Rindone, J. Amer. Ceram. Soc. 50 (1967) 336.

    Google Scholar 

  29. V. S. Postnikov, Y. S. Balashov and B. G. Varshal, Inorg. Mater. 4 (1968) 996.

    Google Scholar 

  30. J. T. Krause, C. R. Kurkijan, D. A. Pinnow and E. A. Sigety, Appl. Phys. Lett. 17 (1970) 367.

    Google Scholar 

  31. R. J. Ryder and G. E. Rindone, J. Amer. Ceram. Soc. 43 (1960) 662; ibid. 44 (1961) 532.

    Google Scholar 

  32. L. C. Hoffman and W. A. Weyl, Glass Ind. 38 (1957) 81, 104.

    Google Scholar 

  33. H. Rötger, Glastech. Ber. 31 (1958) 54.

    Google Scholar 

  34. R. Jagdt, ibid. 33 (1960) 10.

    Google Scholar 

  35. M. Coenen, Zeit, für Elektrochem. 65 (1961) 903.

    Google Scholar 

  36. M. B. Field, J. Appl. Phys. 39 (1968) 2927.

    Google Scholar 

  37. J. E. Shelby and D. E. Day, J. Amer. Ceram. Soc. 52 (1969) 169; ibid. 53 (1970) 18.

    Google Scholar 

  38. G. L. McVay and D. E. Day, ibid. 53 (1970) 508.

    Google Scholar 

  39. T. J. Higgins, P. B. Macedo and V. Volterra, ibid. 55 (1972) 488.

    Google Scholar 

  40. K. Otto and M. E. Milberg, ibid. 51 (1968) 326.

    Google Scholar 

  41. V. Provenzano, L. P. Boesch, V. Volterra, C. T. Moynihan and P. B. Macedo, ibid. 55 (1972) 492.

    Google Scholar 

  42. C. R. Das and R. W. Douglas, Phys. Chem. Glass 8 (1967) 178.

    Google Scholar 

  43. R. W. Douglas, ibid. 4 (1963) 34.

    Google Scholar 

  44. H. E. Taylor, J. Soc. Glass Technol. 43 (1959) 124T.

    Google Scholar 

  45. V. K. Leko and M. L. Dorokhova, “The Structure of Glass”, Vol. 4 (Consultants Bureau, New York, 1960) p. 118.

    Google Scholar 

  46. R. H. Doremus, J. Non-Cryst. Solids 3 (1970) 369.

    Google Scholar 

  47. D. E. Day and J. Stevels, ibid. 14 (1974) 165.

    Google Scholar 

  48. D. E. Day, J. Amer. Ceram. Soc. 57 (1974) 530.

    Google Scholar 

  49. T. D. Taylor and G. E. Rindone, J. Non-Cryst. Solids 14 (1974) 157.

    Google Scholar 

  50. J. O. Isard, ibid. 1 (1969) 235.

    Google Scholar 

  51. J. W. Fleming and D. E. Day, J. Amer. Ceram. Soc. 55 (1972) 186.

    Google Scholar 

  52. R. L. Myuller, Soviet Phys. Solid State 2 (1960) 1219, 1224.

    Google Scholar 

  53. R. M. Hakim and D. R. Uhlmann, Phys. Chem. Glass 8 (1967) 174.

    Google Scholar 

  54. R. Terai, J. Non-Cryst. Solids 6 (1971) 112.

    Google Scholar 

  55. T. J. Higgins, L. P. Boesch, V. Volterra, C. T. Moynihan and P. B. Macedo, J. Amer. Ceram. Soc. 55 (1973) 334.

    Google Scholar 

  56. H. M. Van Ass and J. M. Stevels, J. Non-Cryst. Solids 16 (1974) 267.

    Google Scholar 

  57. H. M. Van Ass and J. M. Stevels, ibid. 16 (1974) 281.

    Google Scholar 

  58. Idem, ibid. 15 (1974) 215; ibid. 16 (1974) 27.

    Google Scholar 

  59. W. E. Steinkamp, T. E. Shelby and D. E. Day, J. Amer. Ceram. Soc. 50 (1967) 271.

    Google Scholar 

  60. D. E. Day and W. E. Steinkamp, ibid. 52 (1969) 571.

    Google Scholar 

  61. D. E. Day, “Amorphous Materials”, edited by R. W. Douglas and B. Ellis (Wiley-Interscience, New York, 1972) pp. 39–47.

    Google Scholar 

  62. J. E. Shelby, J. Appl. Phys. 46 (1975) 193.

    Google Scholar 

  63. C. T. Moynihan, A. J. Castel, D. C. Tran, J. A. Wilder and E. P. Donovan, J. Amer. Ceram. Soc. 59 (1976) 137.

    Google Scholar 

  64. K. Matusita, S. Sakka, A. Osako, N. Soga and M. Kunigi, J. Non-Cryst. Solids 16 (1974) 308.

    Google Scholar 

  65. S. C. Waterton and W. Turner, J. Soc. Glass Technol. 18 (1934) 268.

    Google Scholar 

  66. R. V. Caporali, J. Amer. Ceram. Soc. 47 (1964) 412.

    Google Scholar 

  67. S. V. Nemilov, J. Appl. Chem. USSR 42 (1969) 46.

    Google Scholar 

  68. G. McVay and D. E. Day, J. Amer. Ceram. Soc. 53 (1970) 284.

    Google Scholar 

  69. G. H. Frischat, ibid. 53 (1970) 285.

    Google Scholar 

  70. K. K. Evstropev, “Structure of Glass”, Vol. 2, (Consultants Bureau, New York, 1960) pp. 237–40.

    Google Scholar 

  71. J. P. Lacharme, Comptes Rendus Acad. Sci., Ser. C 270 (1970) 1350.

    Google Scholar 

  72. K. K. Evstropev and V. K. Pavlovskij, in “Structure of Glass”, Vol. 7, edited by E. A. Porai-Koszits (Consultants Bureau, New York, 1966) pp. 103–5.

    Google Scholar 

  73. D. E. Day, J. Non-Cryst. Solids 21 (1976) 343.

    Google Scholar 

  74. C. Zener, Phys. Rev. 71 (1947) 34.

    Google Scholar 

  75. K. Endell and J. Hellbrügge, Glastech. Ber. 20 (1942) 277.

    Google Scholar 

  76. V. Wagner and S. Forcheri, Zeit. Naturforsch. 22A (1967) 891.

    Google Scholar 

  77. A. Benrath and J. Wainoff, Z. physik. Chem. 77 (1911) 257.

    Google Scholar 

  78. S. E. Svansson and R. Johansson, Acta Chem. Scand. 24 (1970) 755.

    Google Scholar 

  79. G. H. Frischat, “Ionic Diffusion in Oxide Glasses”, Diffusion and Defect Monograph Series (Trans Tech Publications, Bay Village, Ohio, 1975).

    Google Scholar 

  80. J. V. Fitzgerald, J. Amer. Ceram. Soc. 34 (1951) 339, 388.

    Google Scholar 

  81. C. R. Ross and R. L. Smith, Amer. Miner. 40 (1955) 1071.

    Google Scholar 

  82. J. H. Walsh, J. Chipman, T. B. King and N. J. Grant, J. Metals, Trans. AIME 8 (1956) 1568.

    Google Scholar 

  83. J. W. Tomlison, J. Soc. Glass Technol. 40 (1956) 25T.

    Google Scholar 

  84. L. E. Russell, ibid. 41 (1957) 304T.

    Google Scholar 

  85. C. R. Kurkjian and L. E. Russell, ibid. 42 (1958) 131T.

    Google Scholar 

  86. J. M. Uys and T. B. King, Met. Trans. AIME 227 (1963) 429.

    Google Scholar 

  87. R. S. McDonald, J. Phys. Chem. 62 (1958) 1168.

    Google Scholar 

  88. M. Scholze, Glastech. Ber. 32 (1959) 81, 142, 381.

    Google Scholar 

  89. R. V. Adams and R. W. Douglas, J. Soc. Glass Technol. 43 (1959) 147T.

    Google Scholar 

  90. A. J. Moulson and J. P. Roberts, Trans. Brit. Ceram. Soc. 59 (1960) 388.

    Google Scholar 

  91. R. V. Adams, Phys. Chem. Glasses 2 (1961) 39.

    Google Scholar 

  92. Idem, ibid. 2 (1961) 50.

    Google Scholar 

  93. G. Hetherington and K. H. Jack, Phys. Chem. Glasses 3 (1962) 129, 141.

    Google Scholar 

  94. H. Franz and H. Scholze, Glastech. Ber. 36 (1963) 347.

    Google Scholar 

  95. H. Franz, ibid. 38 (1966) 54.

    Google Scholar 

  96. H. Franz, J. Amer. Ceram. Soc. 49 (1966) 473.

    Google Scholar 

  97. W. Haller, Phys. Chem. Glasses 4 (1963) 217.

    Google Scholar 

  98. T. Drury, G. J. Roberts and J. P. Roberts, in Advances of Glass Technology (1962) pp. 249–55.

  99. G. J. Roberts and J. P. Roberts, Phys. Chem. Glasses 5 (1964) 26.

    Google Scholar 

  100. R. W. Lee, ibid. 5 (1964) 35.

    Google Scholar 

  101. I. Burn and J. P. Roberts, “Diffusion of Water in Silica Glass Under Iso-Compositional Conditions”.

  102. G. J. Roberts and J. P. Roberts, Phys. Chem. Glasses 7 (1966) 82.

    Google Scholar 

  103. D. R. Cockram, Z. Haider and G. J. Roberts, ibid. 10 (1969) 18.

    Google Scholar 

  104. Z. Haider and G. J. Roberts, Glass Technol. 11 (1970) 153, 158.

    Google Scholar 

  105. C. R. Kurkjian and J. T. Krause, J. Amer. Ceram. Soc. 49 (1966) 171.

    Google Scholar 

  106. H. Waal, ibid. 52 (1969) 165.

    Google Scholar 

  107. M. S. Maklad and N. J. Kreidl, in Scientific and Technical Communications of the 9th International Congress on Glass, Vol. I (Inst. du Verre, Paris, 1971) pp. 75–100.

    Google Scholar 

  108. A. Ismail, A. Abdel-Latif and D. E. Day, J. Amer. Ceram. Soc. 55 (1972) 254.

    Google Scholar 

  109. D. E. Day and J. M. Stevels, J. Non-Cryst. Solids 11 (1973) 459.

    Google Scholar 

  110. H. M. J. M. Van Ass, and J. M. Stevels, ibid. 13 (1973/74) 304.

    Google Scholar 

  111. D. E. Day, “Internal Friction of Glasses Containing Water — Review”, Wiss. Ztschr. Friedrich-Schiller-Univ. Jena, Math.-Nat. R. 23 (1974) 293.

    Google Scholar 

  112. P. Ehrmann, M. Billy and J. Zarzycki, Verres Refract. 15 (1961) 63, 131; ibid. 18 (1964) 169.

    Google Scholar 

  113. R. M. Friedman, Silic. Industriels 9 (1974) 247.

    Google Scholar 

  114. J. H. Escard and D. J. Brion, J. Amer. Ceram. Soc. 58 (1975) 296.

    Google Scholar 

  115. V. Garino Canina and M. Priqueler, Phys. Chem. Glasses 3 (1962) 43.

    Google Scholar 

  116. F. M. Ernsberger, J. Amer. Ceram. Soc. 60 (1977) 91.

    Google Scholar 

  117. G. L. McVay, Unpublished results (1976).

  118. J. E. Shelby and G. L. McVay, J. Non-Cryst. Solids 20 (1976) 439.

    Google Scholar 

  119. T. Abe, J. Amer. Ceram. Soc. 35 (1952) 284.

    Google Scholar 

  120. H. Nakashima, S. Tsuchinashi and K. Eguchi, Yogyo-Kyokai-Shi 79 (1971) 173.

    Google Scholar 

  121. K. A. Kostayan, in “Structure of Glass”, Vol. II, (Consultants Bureau, New York, 1960) pp. 234–6.

    Google Scholar 

  122. H. Waal, Phys. Chem Glasses 10 (1969) 101.

    Google Scholar 

  123. P. Beekenkamp, ibid. 9 (1968) 14.

    Google Scholar 

  124. E. N. Boulos and N. J. Kreidl, J. Amer. Ceram. Soc. 54 (1971) 318.

    Google Scholar 

  125. Idem, ibid. 54 (1971) 368.

    Google Scholar 

  126. B. I. Markin, J. Gen. Chem. USSR 11 (1941) 285.

    Google Scholar 

  127. P. L. White, Phys. Chem. Glasses 12 (1971) 11.

    Google Scholar 

  128. P. L. White, ibid. 12 (1971) 109.

    Google Scholar 

  129. W. J. Th. Van Gemert, H. Van Ass and J. M. Stevels, J. Non-Cryst. Solids 16 (1974) 281.

    Google Scholar 

  130. D. E. Day and G. E. Rindone, J. Amer. Ceram. Soc. 44 (1961) 161.

    Google Scholar 

  131. R. H. Redwine and M. B. Field, J. Mater. Sci. 4 (1969) 713.

    Google Scholar 

  132. O. V. Mazurin, Phys. Chem. Glasses 9 (1968) 165.

    Google Scholar 

  133. S. W. Taylor and D. E. Day, ibid. 11 (1970) 89.

    Google Scholar 

  134. Y. S. Balashov, B. Varshal and B. Darinskij, Neorg. Mater. 6 (1970) 70.

    Google Scholar 

  135. M. S. Aslanova, Y. S. Balashov, N. Ivanov, A. Noskov, V. Rudnev and A. Szkolnikova, ibid. 9 (1973) 1038.

    Google Scholar 

  136. M. S. Aslanova, V. S. Postnikov, A. B. Noskov, Y. S. Balashov and N. V. Ivanov, Steklo, Keram. (USSR) 10 (1973) 13.

    Google Scholar 

  137. T. D. Taylor and G. E. Rindone, J. Amer. Ceram. Soc. 51 (1968) 289.

    Google Scholar 

  138. H. Waal, Phys. Chem. Glasses 10 (1969) 108.

    Google Scholar 

  139. A. I. Abdel-Latif and D. E. Day, J. Amer. Ceram. Soc. 55 (1972) 279.

    Google Scholar 

  140. J. R. Charles, ibid. 48 (1965) 432.

    Google Scholar 

  141. M. Coenen, Glastech. Ber. 35 (1962) 425.

    Google Scholar 

  142. I. S. Gilev and G. T. Petrovskij, Inorg. Mater. 4 (1968) 1103, 1108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zdaniewski, W.A., Rindone, G.E. & Day, D.E. The internal friction of glasses. J Mater Sci 14, 763–775 (1979). https://doi.org/10.1007/BF00550707

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550707

Keywords

Navigation