Journal of Materials Science

, Volume 4, Issue 2, pp 152–165 | Cite as

Anisotropy in oriented fibres from synthetic polymers

  • D. W. Hadley
  • P. R. Pinnock
  • I. M. Ward


On the assumption that synthetic fibres at low strains can be considered as transversely isotropic elastic bodies the five independent elastic compliances have been measured for filaments of low and high density polyethylene, nylon 6.6, polyethylene terephthalate and polypropylene, all at room temperature. Experimental values are compared with those predicted using an aggregate theory which assumes that the partially oriented fibre can be considered as an aggregate of elastic units which are aligned by the drawing process, and whose properties are those of the fully oriented fibre.

The applicability of this aggregate theory is discussed, and possible explanations are advanced in those cases where agreement between theory and experiment is unsatisfactory.


Polymer Anisotropy Polyethylene Nylon Polypropylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Ward, Appl. Mat. Res. 5 (1966) 224.Google Scholar
  2. 2.
    I. M. Ward and P. R. Pinnock, Brit. J. Appl. Phys. 17 (1966) 3.Google Scholar
  3. 3.
    R. F. S. Hearmon, Adv. Phys. 5 (1956) 323.Google Scholar
  4. 4.
    J. F. Nye, “Physical Properties of Crystals” (Clarendon Press, Oxford, 1957).Google Scholar
  5. 5.
    I. M. Ward, Proc. Phys. Soc. 80 (1962) 1176.Google Scholar
  6. 6.
    A. Reuss, Z. Angew. Math. Mech 9 (1929) 49.Google Scholar
  7. 7.
    W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928) p. 410.Google Scholar
  8. 8.
    D. W. Hadley, I. M. Ward, and J. Ward, Proc. Roy. Soc. A285 (1965) 275.Google Scholar
  9. 9.
    P. R. Pinnock, I. M. Ward, and J. M. Wolfe, ibid A291 (1966) 267.Google Scholar
  10. 10.
    R. Meredith, J. Text. Inst. 45 (1954) T489.Google Scholar
  11. 11.
    P. R. Pinnock and I. M. Ward, Brit. J. Appl. Phys. 15 (1964) 1559.Google Scholar
  12. 12.
    G. Raumann and D. W. Saunders, Proc. Phys. Soc. 77 (1961) 1028.Google Scholar
  13. 13.
    G. Raumann, ibid 79 (1962) 1221.Google Scholar
  14. 14.
    S. M. Crawford and H. Kolsky, ibid B64 (1951) 119.Google Scholar
  15. 15.
    C. G. Cannon and F. P. Chappel, Brit. J. Appl. Phys 10 (1959) 68.Google Scholar
  16. 16.
    W. Kuhn and F. Grün, Kolloid-Z. 101 (1942) 248.Google Scholar
  17. 17.
    S. W. Allison and I. M. Ward, Brit. J. Appl. Phys. 18 (1967) 1151.Google Scholar
  18. 18.
    P. R. Pinnock and I. M. Ward, ibid 17 (1966) 575.Google Scholar
  19. 19.
    D. A. Keedy, J. Powers, and R. S. Stein, J. Appl. Phys. 31 (1960) 1911.Google Scholar
  20. 20.
    V. B. Gupta and I. M. Ward, J. Macromol. Sci. (Phys.) B(i)2 (1967) 373.Google Scholar
  21. 21.
    Idem, ibid B(ii)1 (1968) 89.Google Scholar
  22. 22.
    J. Bishop and R. Hill, Phil. Mag. 42 (1951) 414; 1298.Google Scholar
  23. 23.
    V. B. Gupta, A. Keller, and I. M. Ward, J. Macromol. Sci. (Phys.) B(ii)1 (1968) 139.Google Scholar
  24. 24.
    V. J. Mcbrierty and I. M. Ward, Brit. J. Appl. Phys. ser 2, 1 (1968) 1529.Google Scholar
  25. 25.
    Z. H. Stachurski and I. M. Ward, J. Polymer. Sci. A26 (1968) 1083.Google Scholar
  26. 26.
    F. C. Frank, V. B. Gupta, and I. M. Ward, unpublished work.Google Scholar
  27. 27.
    A. Odajima and I. Maeda, Report Prog. Polymer Phys. Japan 9 (1966) 169.Google Scholar

Copyright information

© Chapman and Hall 1969

Authors and Affiliations

  • D. W. Hadley
    • 1
  • P. R. Pinnock
    • 2
  • I. M. Ward
    • 3
    • 4
  1. 1.J. J. Thomson Physical LaboratoryThe UniversityReadingUK
  2. 2.Imperial Chemical Industries Fibres LimitedHarrogateUK
  3. 3.H. H. Wills Physics LaboratoryThe UniversityBristolUK
  4. 4.Petrochemical and Polymer LaboratoryImperial Chemical Industries LimitedRuncornUK

Personalised recommendations