Journal of Materials Science

, Volume 15, Issue 7, pp 1736–1745 | Cite as

Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials

  • Michael J. Adamson


This paper presents results of experiments in which the thermal expansion and swelling behaviour of an epoxy resin system and two graphite/epoxy composite systems exposed to water were measured. It was found that the cured epoxy resin swells by an amount slightly less than the volume of the absorbed water and that the swelling efficiency of the water varies with the moisture content of the polymer. Additionally, the thermal expansion of cured epoxy resin that is saturated with water is observed to be more than twice that of dry resin. Results also indicate that cured resin that is saturated with 7.1% water at 95° C will rapidly increase in moisture content to 8.5% when placed in 1° C water. The mechanism for this phenomenon, termed reverse thermal effect, is described in terms of a slightly modified free-volume theory in conjunction with the theory of polar molecule interaction. Nearly identical behaviour was observed in two graphite/epoxy composite systems, thus establishing that this behaviour may be common to all cured epoxy resins.


Polymer Epoxy Thermal Expansion Composite Material Thermal Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. C. Judd, Proceedings of the 30th Anniversary Technical Conference, Reinforced Plastics/Composites Institute (Soc. Plast. Ind., Inc., New York, 1975) Section 18-A.Google Scholar
  2. 2.
    J. H. Powell and D. V. Zigrang, “Proceedings of Conference on Environmental Effects” (Rockwell International Corporation, Tulsa, Oklahoma, 1976) p. 224.Google Scholar
  3. 3.
    J. C. Bowman, “Handbook of Fiberglass and Advanced Plastics Composites”, edited by George Lubin (SPE Polymer Technology Series, 1969) Ch. 11.Google Scholar
  4. 4.
    R. M. Verrette and J. D. Labor, “Structural Criteria for Avanced Composites, Vol. I”, Technical Report AFFDL-TR-76-142, Northrup Corporation, Hawthorne, California (1977).Google Scholar
  5. 5.
    C-H. Shen and G. S. Springer, J. Comp. Mater. 10 (1976) 1.Google Scholar
  6. 6.
    E. L. McKague, Jr., J. D. Reynolds and J. E. Halkias, J. Appl. Polymer Sci. 22 (1978) 1643.Google Scholar
  7. 7.
    E. L. McKague, Jr., J. E. Halkias and J. D. Reynolds, J. Comp. Mater. 9 (1975) 2.Google Scholar
  8. 8.
    F. Bueche, “Physical Properties of Polymers” (Wiley, New York, London, 1962).Google Scholar
  9. 9.
    J. D. Ferry, “Viscoelastic Properties of Polymers” (Wiley, New York, London, 1961).Google Scholar
  10. 10.
    G. Rehage and W. Borchard, “The Physics of Glassy Polymers”, edited by R. N. Haward (Wiley, New York, 1973) Ch. 1, pp. 54–107.Google Scholar
  11. 11.
    R. D. Deanin, “Polymer Structure, Properties and Application” (Cahners, Boston, Mass., 1972).Google Scholar
  12. 12.
    T. K. Kwei, J. Appl. Polymer Sci. 10 (1966) 1647.Google Scholar
  13. 13.
    P. J. Flory, “Principles of Polymer Chemistry” (Cornell University Press, Ithaca, 1953).Google Scholar
  14. 14.
    F. W. Billmeyer, Jr., “Textbook of Polymer Science”, 2nd Edn. (Wiley, New York, 1971).Google Scholar
  15. 15.
    L. E. Nielsen, “Reviews in Macromolecular Chemistry”, Vol. 4, edited by G. B. Butler and K. F. O'Driscoll (Marcel Dekker, New York, 1970).Google Scholar
  16. 16.
    Y. J. Chang, C. T. Chen and A. V. Tobolsky, J. Polymer Sci. Polymer Phys. Ed. 12 (1974) 1.Google Scholar
  17. 17.
    D. R. Paul, J. Polymer Sci. A-2 7 (1969) 1811.Google Scholar
  18. 18.
    H. Yasuda, C. E. Lamaze and A. Peterlin, ibid. 9 (1971) 1117.Google Scholar
  19. 19.
    W. R. Vieth and K. J. Sladek, J. Colloid Sci. 20 (1965) 1014.Google Scholar
  20. 20.
    H. W. Bergmann and C. W. Dill, “Proceedings of Conference on Environmental Effects” (Rockwell International Corporation, Tulsa, Oklahoma, 1976) p. 244.Google Scholar
  21. 21.
    A. Kelly, Sci. Amer. 217 (3) (1967) 160.Google Scholar
  22. 22.
    R. C. Wyatt and K. H. G. Ashbee, Fibre Science Technology 2 (1969) 29.Google Scholar
  23. 23.
    J. Hertz, National SAMPE Tech. Conference Vol. 4 (SAMPE, Azusa, 1972) pp. 1–7.Google Scholar
  24. 24.
    R. J. Morgan and J. E. O'Neal, Polymer Plast. Technol. Eng. 5 (2) (1975) 173.Google Scholar
  25. 25.
    A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci. Chem. A3 (1969) 275.Google Scholar
  26. 26.
    R. E. Cuthrell, J. Appl. Polymer Sci. 11 (1967) 949.Google Scholar
  27. 27.
    E. H. Erath and M. Robinson, J. Polymer Sci. C 3 (1963) 65.Google Scholar
  28. 28.
    D. H. Solomon, B. C. Loft and J. D. Swift, J. Appl. Polymer Sci. 11 (1967) 1593.Google Scholar
  29. 29.
    H. P. Wohnsiedler, J. Polymer Sci. C 3 (1963) 77.Google Scholar
  30. 30.
    H. T. Sumsion and D. P. Williams, “Fatigue of Composite Materials”, Special Technical Publication 569, Amer. Soc. for Testing and Materials (1975) pp. 226–247.Google Scholar
  31. 31.
    J. Crank and G. S. Park, “Diffusion in Polymers” (Academic Press, London, 1968).Google Scholar
  32. 32.
    E. L. McKague, Jr., J. D. Reynolds and J. E. Halkias, Trans. ASME, J. Eng. Mater. Tech. 98 (1976) 92.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • Michael J. Adamson
    • 1
  1. 1.Materials Science and Applications Office, Ames Research CenterNASACaliforniaUSA

Personalised recommendations