Journal of Materials Science

, Volume 15, Issue 11, pp 2785–2794 | Cite as

Impurities in single crystal indium phosphide

  • B. Cockayne
  • W. R. Macewan
  • G. T. Brown


The impurity concentrations in present low carrier concentration indium phosphide single crystals (ND-NA=2×1015 to 5×1015cm−3) grown by the Czochralski technique have been measured by spark-source mass spectrometry and radio-gamma activation analysis and compared with both the polycrystalline source material and the excess indium produced during compounding and growth. The predominant impurities are shown to be carbon, oxygen and silicon but the segregation of lesser impurities into the excess indium has allowed some nineteen other elements which are likely to be present in indium phosphide to be identified. No consistent correlation is evident between the measured concentration of specific impurities and the ionized donor (ND) and acceptor (NA) impurity levels as determined from the free-electron concentration (ND-NA) and Hall mobility at 77 K using the Brooks-Herring theory.


Indium Mass Spectrometry Activation Analysis Carrier Concentration Measured Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Mullin, A. Royle and B. W. Straughan, in “International Symposium on GaAs and Related Compounds”, Aachen 1970, edited by H. Beneking (Institute of Physics, Bristol, 1970) p. 71.Google Scholar
  2. 2.
    J. B. Mullin, A. Royle, B. W. Straughan, P. J. Tufton and E. W. Williams, J. Cryst. Growth 13/14 (1972) 640.Google Scholar
  3. 3.
    Idem, in “International Symposium on GaAs and Related Compounds”, Boulder 1972, edited by C. Hilsum (Institute of Physics, Bristol, 1972) p. 118.Google Scholar
  4. 4.
    K. J. Bachman, E. Buehler, J. L. Shay and D. L. Malm, Institute of Physics Conference Series No 24 (Institute of Physics, Bristol, 1975) p. 121.Google Scholar
  5. 5.
    G. A. Antypas, J. Cryst. Growth 33 (1976) 174.Google Scholar
  6. 6.
    R. L. Henry and E. M. Swiggard, Institute of Physics Conference Series No 336 (Institute of Physics, Bristol, 1977) p. 28.Google Scholar
  7. 7.
    G. A. Antypas, Institute of Physics Conference Series No 336 (Institute of Physics, Bristol, 1977) p. 55.Google Scholar
  8. 8.
    G. W. Iseler, Institute of Physics Conference Series No 45 (Institute of Physics, Bristol, 1979) p. 144.Google Scholar
  9. 9.
    P. J. Dean, D. J. Robbins and S. G. Bishop, Solid State Comm. 32 (1979) 379.Google Scholar
  10. 10.
    S. H. Chiao and G. A. Antypas, J. Appl. Phys. 49 (1978) 466.Google Scholar
  11. 11.
    A. M. White, A. J. Grant and B. Day, Electronics Lett. 14 (1978) 409.Google Scholar
  12. 12.
    A. N. M. M. Choudhury and P. N. Robson, ibid. 15 (1979) 247.Google Scholar
  13. 13.
    W. Bardsley, B. Cockayne, G. W. Green, D. T. J. Hurle, G. C. Joyce, J. M. Roslington, P. J. Tufton and H. C. Webber, J. Cryst. Growth 24/25 (1974) 369.Google Scholar
  14. 14.
    G. W. Blackmore, J. B. Clegg, J. S. Hislop and J. B. Mullin, J. Electronic Materials 5 (1976) 401.Google Scholar
  15. 15.
    H. Brooks, in “Advances in Electronics and Electron Physics” edited by L. Marxon (Academic Press, New York and London, 1955) p. 158.Google Scholar
  16. 16.
    S. J. Bass, private communication (1979).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • B. Cockayne
    • 1
  • W. R. Macewan
    • 1
  • G. T. Brown
    • 1
  1. 1.Royal Signals and Radar EstablishmentMalvernUK

Personalised recommendations