Journal of Materials Science

, Volume 4, Issue 4, pp 290–301 | Cite as

Fluxoid pinning by second phases in a superconducting niobium-zirconium alloy

  • G. W. J. Waldron


The effects of second phases on the critical currents of superconducting niobium-zirconium alloys containing a nominal 25 wt % zirconium have been determined by superconducting magnetisation experiments. Heat treatment of annealed and extruded materials in the temperature range 600 to 900° C leads to a cellular decomposition of the high temperature β structure into two isostructural phases, one niobium-rich (βNb) and the other zirconium rich (βZr), with an accompanying increase in critical current (at an average field of 20 kOe) up to twelve times the original value. Heat treatment of quenched tubes at 800 or 900° C produces precipitation on sub-boundaries prior to the cellular reaction, this being accompanied by an increase in critical current to at least thirteen times the original value. In this case, however, prolonged heating leads to a fall in critical current which it is suggested is an “overageing” effect.


Polymer Precipitation Zirconium Heat Treatment Critical Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Friedel, P. G. Degennes, and J. Matricon, Appl. Phys. Lett. 2 (1963) 119.Google Scholar
  2. 2.
    J. Silcox and R. W. Rollins, Appl. Phys. Lett. 2 (1963) 231.Google Scholar
  3. 3.
    W. W. Webb, Phys. Rev. Lett. 11 (1963) 191.Google Scholar
  4. 4.
    P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36 (1964) 39.Google Scholar
  5. 5.
    M. S. Walker, R. Stickler, and F. E. Werner, “Metallurgy of Advanced Electronic Materials”, edited by Brock (Interscience, New York, 1962) p. 49.Google Scholar
  6. 6.
    J. D. Livingston, Acta Metallurgica 11 (1963) 1371.Google Scholar
  7. 7.
    Idem, Phys. Rev. 129 (1963) 1943.Google Scholar
  8. 8.
    Idem, J. Appl. Phys. 34 (1963) 3028.Google Scholar
  9. 9.
    B. A. Rogers and D. F. Atkins, Trans. AIMME 203 (1955) 1034.Google Scholar
  10. 10.
    Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 129 (1963) 528.Google Scholar
  11. 11.
    D. P. Laverty and R. H. Hiltz, “Advances in X-ray Analysis”, 8 (Plenum Press, New York, 1965) p. 103.Google Scholar
  12. 12.
    N. Morton, Phys. Lett. 19 (1965) 457.Google Scholar
  13. 13.
    G. R. Love and M. L. Picklesimer, Trans. Met. Soc. AIME 236 (1966) 430.Google Scholar
  14. 14.
    K. M. Ralls, A. L. Donlevy, R. M. Rose, and J. Wulff, “metallurgy of Advanced Electronic Materials”, edited by Brock (Interscience, New York, 1962) p. 35.Google Scholar
  15. 15.
    H. T. Coffey, J. K. Hulm, W. T. Reynolds, D. K. Fox, and R. E. Span, J. Appl. Phys. 36 (1965) 128.Google Scholar
  16. 16.
    J. D. Livingston and H. W. Schlader, Progr. Matls. Sci. 12 (1963–5) 183.Google Scholar
  17. 17.
    H. J. Levinstein, E. S. Greiner, and H. Mason, Jr, J. Appl. Phys. 37 (1966) 164.Google Scholar
  18. 18.
    A. V. Narlikar and D. Dew-Hughes, J. Materials Sci. 1 (1966) 317.Google Scholar
  19. 19.
    J. P. McEvoy and R. F. Decell, J. Appl. Phys. 35 (1964) 982.Google Scholar
  20. 20.
    J. D. Livingston, Rev. Mod. Phys. 36 (1964) 54.Google Scholar
  21. 21.
    T. H. Alden and J. D. Livingston, Appl. Phys. Lett. 8 (1966) 6.Google Scholar
  22. 22.
    A. Kelly and R. B. Nicholson, Progr. Matls. Sci. 10 (1963) 151.Google Scholar
  23. 23.
    G. W. T. Waldron, J. Less Common Met. 17 (1969) 167.Google Scholar

Copyright information

© Chapman and Hall 1969

Authors and Affiliations

  • G. W. J. Waldron
    • 1
  1. 1.Central Research Laboratories, Hirst Research CentreThe General Electric Company LimitedWembleyUK

Personalised recommendations