Journal of Materials Science

, Volume 15, Issue 12, pp 3129–3140 | Cite as

Morphology and lattice distortions of nitrided iron and iron-chromium alloys and steels

  • E. J. Mittemeijer
  • A. B. P. Vogels
  • P. J. Van Der Schaaf


Specimens prepared from iron, iron-chromium alloys (0 to 4 wt% Cr) and commercial steels (C45, 41Cr4, 15CrNi6 and 24CrMo13) were powder nitrided at 818 K for 0.25 to 32 h. After cooling to room temperature the resulting morphology, lattice distortions and compositional variations were determined by X-ray diffraction analysis, metallographic methods and electron microprobe analysis. In the diffusion zone of iron and iron-chromium (0.54 wt% Cr), α″-(Fe16N2)- and γ′-(Fe4N)-nitrides were observed, whereas specimens of the iron-chromium alloys with a higher chromium content showed a finely dispersed submicroscopical precipitation of CrN in the matrix and precipitates of Cr2N at the grain boundaries. With increasing nitriding times for the iron-chromium alloy with the highest chromium content (3.82 wt% Cr) a discontinuous precipitation starting from the grain boundaries occurred. For the first time recrystallization phenomena in the diffusion zone were observed, indicating that the inward diffusion of nitrogen introduces large lattice distortions. Large distortions were determined from X-ray diffraction line shift and line broadening respectively. The behaviour of macro- and micro-strain as a function of nitriding time was interpreted in terms of the volume changes caused by nitriding and subsequent precipitation. The residual surface stresses were calculated from the macrostrains applying the Voigt-Reuss-mean model. The experimentally determined ratio of the macrostrains in the (100) and the (110) directions was in good agreement with the value predicted from the model. The corresponding ratio of the microstrains was significantly larger than this theoretical prediction, which can be attributed to precipitates growing along (100) planes in the matrix (such as α″-nitride and CrN). In contrast with the macrostrain, a strong relation was found between the microstrain and the chromium content of the specimen.


Lattice Distortion Electron Microprobe Analysis Diffusion Zone Line Shift Discontinuous Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Source Book on Nitriding, (ASM, Metals Park, Ohio, 1977).Google Scholar
  2. 2.
    P. Birk, Microtechnic 24 (1970) 277.Google Scholar
  3. 3.
    T. Bell, Heat Treatment of Metals 2 (1975) 39.Google Scholar
  4. 4.
    J. Zyśk, Härterei-Tech. Mitt. 31 (1976) 137.Google Scholar
  5. 5.
    K. Sachs and D. B. Clayton, Heat Treatment of Metals 6 (1979) 29.Google Scholar
  6. 6.
    O. Schaaber and H. Vetters, Härterei-Tech. Mitt. 33 (1978) 305.Google Scholar
  7. 7.
    E. J. Mittemeijer, A. B. P. Vogels and P. J. Van Der Schaaf, Scripta Met. 14 (1980) 411.Google Scholar
  8. 8.
    E. Lehrer, Z. Electrochem. 36 (1930) 383.Google Scholar
  9. 9.
    R. Delhez and E. J. Mittemeijer, J. Appl. Cryst. 8 (1975) 609.Google Scholar
  10. 10.
    B. Prenosil, Härterei-Tech. Mitt. 20 (1965) 41.Google Scholar
  11. 11.
    C. Dawes, D. F. Tranter and C. G. Smith, Met. Technol. 6 (1979) 395.Google Scholar
  12. 12.
    W. H. Kool, E. J. Mittemeijer and D. Schalkoord, Proceedings of the 9th Conference on X-ray Optics and Microanalysis (ICXOM), Vol. 3, 1980, The Hague, The Netherlands, (Electron Microscopy Foundation, Heiden, 1980) p. 228.Google Scholar
  13. 13.
    C. Dawes and D. F. Tranter, Met. Technol. 5 (1978) 278.Google Scholar
  14. 14.
    B. Prenosil, Härterei-Techn. Mitt. 28 (1973) 157.Google Scholar
  15. 15.
    K. H. Jack, Proc. Roy. Soc. A208 (1951) 216.Google Scholar
  16. 16.
    A. M. Beers and E. J. Mittemeijer, Thin Solid Films 48 (1978) 367.Google Scholar
  17. 17.
    E. J. Mittemeijer and A. M. Beers, ibid. 65 (1980) 125.Google Scholar
  18. 18.
    I. Barin and O. Knacke, “Thermochemical properties of inorganic substances” (Springer Verlag, Berlin, 1973).Google Scholar
  19. 19.
    B. Mortimer, P. Grieveson and K. H. Jack, Scan. J. Metall. 1 (1972) 203.Google Scholar
  20. 20.
    K. H. Jack, Proc. Heat Treatment 1973 (The Metals Society, London, 1973) p. 39.Google Scholar
  21. 21.
    G. S. Woods and A. Ball, Phil. Mag. 27 (1973) 785.Google Scholar
  22. 22.
    H. A. Wriedt and L. Zwell, Trans. AIME 224 (1962) 1242.Google Scholar
  23. 23.
    D. H. Hack and K. H. Jack, Mater. Sci. Eng. 11 (1973) 1.Google Scholar
  24. 24.
    M. Hansen, “Constitution of Binary Alloys” 2nd edition (McGraw Hill, New York, 1958) p. 673.Google Scholar
  25. 25.
    W. B. Pearson, “A Handbook of Lattice Spacings and Structures of Metals and Alloys” Vol. 1 (Pergamon Press, Oxford and New York, 1972) p. 982.Google Scholar
  26. 26.
    J. D. Fast and M. B. Verrijp, J. Iron Steel Inst. 176 (1954) 24.Google Scholar
  27. 27.
    R. Th. Furnée and E. J. Mittemeijer, unpublished work (1980).Google Scholar
  28. 28.
    J. C. Gregory, Heat Treatment of Metals 2 (1975) 55.Google Scholar
  29. 29.
    H. Kunst, private communication (1980).Google Scholar
  30. 30.
    R. Hill, Proc. Phys. Soc. A52 (1952) 349. AQUA, Trans. AIME 233 (1965) 1280.Google Scholar
  31. 31.
    C. N. J. Wagner, J. P. Boisseau and E. N. Google Scholar
  32. 32.
    C. J. Smithels, “Metals Reference Book”, 5th edition (Butterworth, London, 1976) p. 978.Google Scholar
  33. 33.
    Th. H. De Keijser, J. I. Langford, E. J. Mittemeijer and A. B. P. Vogels, in preparation.Google Scholar
  34. 34.
    R. Delhez, Th. H. De Keijser and E. J. Mittemeijer in “Accuracy in Powder Diffraction”, edited by S. Block and C. R. Hubbard, National Bureau of Standards Special Publication 567 (1980) 213.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • E. J. Mittemeijer
    • 1
  • A. B. P. Vogels
    • 1
  • P. J. Van Der Schaaf
    • 1
  1. 1.Laboratory of MetallurgyDelft University of TechnologyAL DelftThe Netherlands

Personalised recommendations