Theoretica chimica acta

, Volume 64, Issue 2, pp 137–152 | Cite as

The electronic structure of the first-row transition-metal diborides

  • David R. Armstrong
Original Investigations


The electronic structures of ScB2, TiB2, VB2, CrB2 and MnB2 have been examined by theoretical investigations. The band structures and accompanying density-of-states plots are presented. The calculated Fermi Levels are, −5.6 eV (ScB2), −5.7 eV (TiB2), −6.3 eV (VB2), −7.1 eV (CrB2), and −7.8 eV (MnB2). The valence bands at the Fermi Edge are localised about the metal 3d orbitals. The charge distributions of the diborides are obtained from the density-of-states plots and show that the metals possess the following positive charges: Sc (+2.28), Ti (+1.99), V (+1.85), Cr (+1.52), and Mn (+1.08). The bonding within the diborides is explained with the help of solid-state calculations at a Special Point and quasi-molecular cluster calculations.

Key words

Band structure Density of states Cluster calculations Transition metal diborides Bonding and charge distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McAllister, A. I., Cuthill, J. R., Williams, M. L., Dobbyn, R. C.: Proc. Int. Symp. on X-Ray Spec. and Elect. Struct. of Matter, Munich 1972Google Scholar
  2. 2.
    Liu, S. H., Kopp, L., England, W. E., Myron, H. W.: Phys. Rev. B11, 3463 (1975)Google Scholar
  3. 3.
    Perkins, P. G., Sweeny, A. V. J.: J. Less-Common Metals 47, 165 (1976)Google Scholar
  4. 4.
    Goryachev, Yu. M., Kovenskaya, B. A., Samsonov, G. V.: Physica 8, 35 (1974)Google Scholar
  5. 5.
    Samsanov, G. V., Kovenskaya, B. A., Serebryakova, T. I.: Doklady AN SSSR, A12, 976 (1971)Google Scholar
  6. 6.
    Armstrong, D. R., Breeze, A., Perkins, P. G.: J. Chem. Soc., Faraday Trans. II, 73, 952 (1977)Google Scholar
  7. 7.
    Armstrong, D. R., and Perkins, P. G.: J. Chem. Soc., Faraday Trans. II 75, 12 (1979)Google Scholar
  8. 8.
    Armstrong, D. R.: J. Less Common Metals 67, 191 (1979)Google Scholar
  9. 9.
    Ammeter, J.H., Burgi, H.-B., Thibeault, J.C., Hoffmann, R.: J. Am. Chem. Soc. 100, 3686 (1978)Google Scholar
  10. 10.
    Peshev, P., Etourneau, J., Naslain, R.: Mat. Res. Bull. 5, 319 (1970)Google Scholar
  11. 11.
    Gebhardt, J. J., Cree, R. F.: J. Am. Ceram. Soc. 48, 262 (1965)Google Scholar
  12. 12.
    Norton, J. T., Blumenthal, H., Sindeband, S. J.: Trans. AIME 185, 749 (1949)Google Scholar
  13. 13.
    Keissling, R.: Acta Chem. Scand. 3, 595 (1949)Google Scholar
  14. 14.
    Fruchart, R., Michel, A.: C.R. Acad. Sc. Paris 251, 2953 (1960)Google Scholar
  15. 15.
    Perkins, P. G., Stewart, J. J. P.: J. Chem. Soc. Faraday Trans. II, 76, 520 (1980)Google Scholar
  16. 16.
    Lyakhovskaya, I. I., Zimkina, T. M., Fomichev, V. A.: Soviet Phys., Solid State 12, 138 (1970)Google Scholar
  17. 17.
    Mott, N. F., Davis, E. A.: Electronic processes in non-crystalline materials, Oxford: Oxford University Press 1971Google Scholar
  18. 18.
    Armstrong, D. R., Perkins, P. G. Stewart, J. J. P.: J. Chem. Soc. Dalton Trans. 838 (1973)Google Scholar
  19. 19.
    Armstrong, D. R., Perkins, P. G., Stewart, J. J. P.: J. Chem. Soc. Dalton Trans. 2273 (1973)Google Scholar
  20. 20.
    Castaing, J., Caudron, R., Toupance, G., Costa, P.: Solid State Comm. 7, 1453 (1969)Google Scholar
  21. 21.
    Tyan, Y. S., Toth, L. E., Chang, Y. A.: J. Phys. Chem. Solids 30, 785 (1969)Google Scholar
  22. 22.
    Kuentzler, R.: C.R. Acad. Sc. Paris 270, B197 (1970)Google Scholar
  23. 23.
    Guy, C. N.: J. Phys. Chem. Solids 37, 1005 (1976)Google Scholar
  24. 24.
    Cadeville, M. C., J. Phys. Chem. Solids 27, 667 (1966)Google Scholar
  25. 25.
    Castaing, J., Costa, P.: Boron and refractory Borides, p. 390. New York: Springer-Verlag 1977Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • David R. Armstrong
    • 1
  1. 1.Department of Pure and Applied Chemistry, Thomas Graham BuildingUniversity of StrathclydeGlasgowUK

Personalised recommendations