Journal of Materials Science

, Volume 6, Issue 6, pp 509–530 | Cite as

Deformation of polyoxymethylene by rolling

  • D. M. Gezovich
  • P. H. Geil


The deformation due to rolling of polyoxymethylene (POM) was investigated by using wide and small angle X-ray techniques and electron microscopy. Tensile tests of rolled POM indicate that the yield stress increases along the roll direction. This is accompanied by a decrease in the yield stress perpendicular to the roll direction. Wide angle X-ray data from uniaxially rolled POM, obtained by means of pole figures, indicate that molecular chains tilt preferentially at approximately 30° to the roll direction at low rolling deformation, and align in the roll direction when the sample is rolled to its fullest extent. A lamellar tilt of of about 30° is also observed. Thus, the chains must tilt within the lamellae. When samples are fully rolled, small angle patterns indicate at least partial breakup of lamellae. Biaxial rolling produces no such breakup, but a uniform tilting of lamellae through the entire range of deformation.


Tensile Test Entire Range Roll Direction Small Angle Pole Figure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. L. Hay and A. Keller, J. Mater. Sci. 1 (1966) 41.Google Scholar
  2. 2.
    Idem, ibid 2 (1967) 538.Google Scholar
  3. 3.
    F. C. Frank, A. Keller, and A. O'Connor, Phil. Mag. 3 (1958) 64.Google Scholar
  4. 4.
    J. J. Point, D. M. Gezovich, A. Keller, and G. A. Homes, J. Mater. Sci., in print.Google Scholar
  5. 5.
    W. Wilchinsky, J. Appl. Polymer. Sci. 7 (1963) 923.Google Scholar
  6. 6.
    Idem, J. Appl. Phys. 31 (1960) 1969.Google Scholar
  7. 7.
    K. O'Leary and P. H. Geil, J. Macromol. Sci. (Phys.) B2(2) (1968) 261.Google Scholar
  8. 8.
    G. S. Y. Yeh and P. H. Geil, ibid B1(2) (1967) 251.Google Scholar
  9. 9.
    W. O. Statton and G. M. Godard, J. Appl. Phys. 28 (1957) 1111.Google Scholar
  10. 10.
    E. W. Fischer, H. Goddar, and G. F. Schmidt, Kolloid Z. u. Z. Polymere 226 (1968) 30.Google Scholar
  11. 11.
    W. O. Statton, J. Polymer Sci. 41 (1959) 143.Google Scholar
  12. 12.
    K. Hess and H. Kiessig, Z. Physik. Chem. 193 (1944) 196.Google Scholar
  13. 13.
    L. B. Morgan, J. Appl. Chem. 4 (1954) 160.Google Scholar
  14. 14.
    R. Bonart and R. Hosemann, Inter. Union Pure Appl. Chem. Symposium on Micromolecular Chemistry, preprints paper IB9 (1959).Google Scholar
  15. 15.
    T. Seto, and T. Hara, Reports on Progress in Polymer Physics IX (Japan 1966).Google Scholar
  16. 16.
    T. Seto and Y. Tajima, J. Appl. Phys. Japan 5 (1967) 534.Google Scholar
  17. 17.
    R. Bonart, Kolloid Z. u. Z, Polymere 199 (1964) 136.Google Scholar
  18. 18.
    W. Wilchinsky, Soc. Plastics Engin. Jour. 22 (1966) 46.Google Scholar
  19. 19.
    I. Swerlich and F. P. Gay, U.S. Patent No. 2,952,878, Sept. 20, 1960.Google Scholar
  20. 20.
    J. G. Williams and H. Ford, J. Mech. Eng. Sci. 9 (1967) 362.Google Scholar
  21. 21.
    G. Gruenwald, Modern Plastics 38 (1960) 137.Google Scholar
  22. 22.
    A. Keller and J. G. Rider, J. Mater. Sci. 1 (1966) 389.Google Scholar
  23. 23.
    B. Maxwell and P. H. Rotschild, J. Appl. Polymer. Sci. 5 (1961) S11.Google Scholar
  24. 24.
    A. Peterlin and J. Elwell, J. Mater. Sci. 2 (1967) 1.Google Scholar
  25. 25.
    L. J. Broutman and S. Kalpakjian, SPE 27th Annual Technical Conference, Chicago, Ill., May 1969.Google Scholar
  26. 26.
    B. D. Cullity, “Elements of X-ray Diffraction,” Addison-Wesley Pub. Co., Reading, Mass. (1959) 285.Google Scholar
  27. 27.
    D. M. Gezovich, Ph.D. Thesis, Case Western Reserve Univ. (1969).Google Scholar
  28. 28.
    E. S. Clark, Soc. Plastics Engin. Jour. 23 (1967) 46.Google Scholar
  29. 29.
    P. H. Geil, J. Polymer Sci. Part C 13 (1966) 149.Google Scholar
  30. 30.
    D. A. Zaukelies, J. Appl. Phys. 33 (1962) 2797.Google Scholar
  31. 31.
    A. Siegmann and P. H. Geil, J. Macromol. Sci. (Phys.) in print.Google Scholar
  32. 32.
    A. Peterlin, J. Polymer Sci., Part C, 15 (1966) 427.Google Scholar
  33. 33.
    R. Corneliussen and A. Peterlin, Makromol. Chem. 105 (1967) 193.Google Scholar
  34. 34.
    A. Peterlin, and R. Corneliussen, J. Polymer Sci. A-2, 6 (1968) 1273.Google Scholar
  35. 35.
    D. Hansen and J. A. Rusnock, J. Appl. Phys. 36 (1965) 332.Google Scholar
  36. 36.
    I. Hay and A. Keller, Kolloid Z. 204 (1965) 43.Google Scholar
  37. 37.
    V. F. Holland and P. H. Lindenmeyer, J. Appl. Phys. 36 (1965) 3049.Google Scholar
  38. 38.
    R. Bonart, Kolloid Z. 199 (1964) 136.Google Scholar
  39. 39.
    T. Oda, S. Nomura, and H. Kawai, J. Polymer Sci. A3 (1965) 1943.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1971

Authors and Affiliations

  • D. M. Gezovich
    • 1
  • P. H. Geil
    • 1
  1. 1.Division of Macromolecular ScienceCase Western Reserve UniversityClevelandUSA

Personalised recommendations