Journal of Materials Science

, Volume 6, Issue 1, pp 39–47 | Cite as

Formation and reversion of G-P zones in Al-1.3 at. % Ag alloy

  • K. N. Murty
  • K. I. Vasu


The kinetics of clustering and reversion of G-P zones in an Al-1.3 at. % Ag alloy have been investigated by resistivity measurements, with special attention to the initial parts of reversion. From an analysis of clustering kinetics, vacancy formation, solute migration and solute-vacancy binding energies have been deduced to be 0.70, 0.53 and 0.10 eV respectively.

The activation energy for reversion, which is identified as the activation energy for solute atom diffusion, is found to vary from 0.98 to 1.46 eV with increasing reversion time. This is attributed to variations in the vacancy concentration in equilibrium with small dislocation loops.


Polymer Migration Activation Energy Binding Energy Resistivity Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Turnbull, H. S. Rosenbaum, and H. N. Treaftis, Acta Metallurgica 8 (1960) 277.Google Scholar
  2. 2.
    D. Turnbull and R. L. Cormia, ibid 8 (1960) 747.Google Scholar
  3. 3.
    J. Okamoto and H. Kimura, Mater. Sci. Eng. 4 (1969) 39.Google Scholar
  4. 4.
    K. Asano and K. Hirano, Fall Meeting of the Institute of Metals, Japan (1968) [as mentioned in Ref 5 below].Google Scholar
  5. 5.
    H. Shimizu and H. Kimura, Mater. Sci. Eng. 5 (1969/70) 127.Google Scholar
  6. 6.
    K. N. Murty and K. I. Vasu, communicated to Mater. Sci. Eng. Google Scholar
  7. 7.
    Idem, Mater. Sci. Eng. 5 (1969/70) 251.Google Scholar
  8. 8.
    K. S. Raman, E. S. D. Das, and K. I. Vasu, J. Mater. Sci. 5 (1970) 105.Google Scholar
  9. 9.
    M. Kiritani, J. Phys. Soc. Japan 20 (1965) 1834.Google Scholar
  10. 10.
    H. Kimura, A. Kimura, and R. R. Hasiguti, Acta Metallurgica 10 (1962) 607.Google Scholar
  11. 11.
    W. Desorbo, H. N. Treaftis, and D. Turnbull, ibid 6 (1958) 401.Google Scholar
  12. 12.
    A. J. Perry, ibid 14 (1966) 1143.Google Scholar
  13. 13.
    F. C. Duckworth and J. Burke, Phil. Mag. 14 (1966) 473.Google Scholar
  14. 14.
    M. Murakami, O. Kawano, and Y. Murakami, Acta Metallurgica 17 (1969) 29.Google Scholar
  15. 15.
    W. M. Lomer, Monogr. Ser. Inst. Metals 23 (1957) 79.Google Scholar
  16. 16.
    R. F. Mehl, F. N. R. Hines, and K. A. Von Den Steinen, Metals and Alloys 13 (1941) 41.Google Scholar
  17. 17.
    D. Turnbull and H. N. Treaftis, Bull. Amer. Phys. Soc. 1 (1956) 334.Google Scholar
  18. 18.
    A. Beerwald, Z. Elektrochem. 45 (1949) 789.Google Scholar
  19. 19.
    K. S. Raman, E. S. D. Das, and K. I. Vasu, Current Sci. 38 (1969) 130.Google Scholar
  20. 20.
    E. S. D. Das, K. S. Raman, and K. I. Vasu, Paper presented at the Conference on “Materials Science and Research India”, Bangalore (1970).Google Scholar
  21. 21.
    M. Ohta and F. Hashimoto, J. Phys. Soc. Japan 19 (1964) 1987.Google Scholar
  22. 22.
    F. Hashimoto, ibid 20 (1965) 336.Google Scholar
  23. 23.
    M. Ohta, F. Hashimoto, and T. Tanimoto, Memoirs of the School of Engg. Okayama Univ. 3 (1968) 39.Google Scholar
  24. 24.
    M. Ohta and F. Hashimoto, J. Phys. Soc. Japan 19 (1964) 133.Google Scholar
  25. 25.
    Idem, Trans. Japan Inst. Met. 6 (1965) 9.Google Scholar
  26. 26.
    D. R. Beaman, R. W. Balluffi, and R. O. Simmons, Phys. Rev. 134 (1964) A532.Google Scholar
  27. 27.
    J. B. Cohen, O. F. Kimball, M. Meshii, and K. Rundman, Acta Metallurgica 14 (1966) 545.Google Scholar
  28. 28.
    G. Thomas, Phil. Mag. 4 (1959) 1213.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1971

Authors and Affiliations

  • K. N. Murty
    • 1
  • K. I. Vasu
    • 1
  1. 1.Materials Research Group, Department of MetallurgyIndian Institute of ScienceBangalore-12India

Personalised recommendations