Advertisement

Journal of Materials Science

, Volume 4, Issue 6, pp 518–525 | Cite as

Some observations on the deformation characteristics of bulk polycrystalline zirconium hydrides

Part 1 The deformation and fracture of hydrides based on the δ-phase
  • K. G. Barraclough
  • C. J. Beevers
Papers

Abstract

The deformation behaviour of bulk polycrystalline zirconium hydrides in the composition range ZrH1.27 to ZrH1.66 has been investigated by compressive loading at temperatures between room temperature and ∼500° C. Single-phase δ-zirconium hydride is brittle below ∼ 100° C. Analyses of slip traces on δ specimens deformed at temperatures between ∼ 100 and ∼ 250° C have shown that the glide planes are {111} types. The deformation characteristics of δ and (δ + γ) alloys at temperatures between ∼ 100 and ∼ 500° C are consistent with the hydrogen vacancies in the δ-phase providing significant lattice friction to the movement of dislocations in the zirconium lattice of the hydride structure. The room temperature fracture stress of (δ + γ) alloys increases with the volume fraction of the γ-phase and this can be related to the resistance offered by γ platelets to the propagation of cleavage cracks in the δ matrix. In a (δ + γ + α) alloy the resistance to crack propagation at room temperature is further increased by the soft α-zirconium phase.

Keywords

Hydrogen Polymer Zirconium Brittle Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Sidhu, N. S. Satya Murthy, F. P. Campos, and D. D. Zauberis, Adv. Chem. Ser. 39 (1963) 87.Google Scholar
  2. 2.
    K. G. Barraclough and C. J. Beevers, to be published.Google Scholar
  3. 3.
    R. L. Beck, Trans. ASM 55 (1962) 542.Google Scholar
  4. 4.
    C. J. Beevers, M. R. Warren, and D. V. Edmonds, J. Less Comm. Met. 14 (1968) 387.Google Scholar
  5. 5.
    G. W. Parry and W. Evans, Electrochem. Tech. 4 (1966) 225.Google Scholar
  6. 6.
    M. R. Warren and C. J. Beevers, Met. Sci. J. 1 (1967) 173.Google Scholar
  7. 7.
    R. L. Beck and W. M. Mueller, “Nuclear Metallurgy”, Vol. VII (Met. Soc. AIME, 1960) p. 63.Google Scholar
  8. 8.
    C. Roy, Ph.D. Thesis (Imperial College, London, 1962).Google Scholar
  9. 9.
    K. H. G. Ashbee, Reported by B. Beagley and J. W. Edington, Brit. J. Appl. Phys. 14 (1963) 609.Google Scholar
  10. 10.
    J. W. Edington and M. J. Klein, J. Appl. Phys. 37 (1966) 3906.Google Scholar
  11. 11.
    T. R. P. Gibb, Prog. Inorg. Chem. 3 (1962) 315.Google Scholar
  12. 12.
    K. G. Barraclough, Ph.D. Thesis (University of Birmingham, 1968).Google Scholar
  13. 13.
    G. E. Hollox and R. E. Smallman, J. Appl. Phys. 37 (1966) 818.Google Scholar
  14. 14.
    P. E. Irving, M.Sc. Thesis (University of Birmingham, 1968).Google Scholar
  15. 15.
    R. Von Mises, Z. angew Math. Mech. 8 (1928) 161.Google Scholar
  16. 16.
    G. G. Libowitz and J. G. Pack, “Proc. Int. Conf. on Crystal Growth”, edited by H. S. Peiser (Pergamon Press, Oxford & New York, 1966) p. 129.Google Scholar
  17. 17.
    A. N. Stroh, Phil. Mag. 3 (1958) 597.Google Scholar

Copyright information

© Chapman and Hall 1969

Authors and Affiliations

  • K. G. Barraclough
    • 1
  • C. J. Beevers
    • 1
  1. 1.Department of Physical Metallurgy and Science of MaterialsThe University EdgbastonBirmingham 15UK

Personalised recommendations