Journal of Materials Science

, Volume 1, Issue 3, pp 249–260 | Cite as

The inversion twin: Prototype in beryllium oxide

  • Stanley B. Austerman
  • William G. Gehman


The inversion twin is an uncommon fault that potentially can be found in the wurtzite- and sphalerite-type crystal structures and related rhombohedral structures, all of which are hemimorphic and possess a polar axis parallel to the c-axis. The twin structure involves exact inversion of the sense of polarity across a transition region (boundary) of variable orientation and complexity. Although several examples of possible but uncertain occurrence of the twin have been noted in other materials, only in beryllium oxide crystals has it been found to occur with abundance and on a macroscopic scale. The inversion twin, as it occurs in BeO, is described in detail. Existence and geometry of the twin is evident from crystal morphology and chemical and mechanical properties. It is suggested that the twin boundary may be stabilised and its energy lowered by the presence of aliovalent impurities along the boundary. Relation of the inversion twin to other types of faults is considered briefly. Previous discussions and presentation of new data in up-to-date assessment of the inversion twin are reviewed.


Polymer Mechanical Property Transition Region Beryllium Wurtzite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Aminoff and G. Broomé, Z. Krist. 80 (1931) 355.Google Scholar
  2. 2.
    L. W. Strock and V. A. Brophy, Am. Min. 40 (1956) 94.Google Scholar
  3. 3.
    L. W. Strock, Acta Cryst. 10 (1957) 840.Google Scholar
  4. 4.
    L. W. Strock, V. A. Brophy, and T. E. Peters, Electrochem. Soc. Meeting (New York, April 1958).Google Scholar
  5. 5.
    L. W. Strock, Illuminating Engineering 55 (1960) 24.Google Scholar
  6. 6.
    W. F. Knippenberg, Philips Res. Repts. 18 (1963) 161–274.Google Scholar
  7. 7.
    H. D. Witzke, Phys. Stat. Sol. 2 (1962) 1109.Google Scholar
  8. 8.
    J. L. Birman, “Advances in Semiconductor Science” (Pergamon Press, New York, 1959), p. 35.Google Scholar
  9. 9.
    A. Lempicki, D. R. Frankel, and V. A. Brophy, Phys. Rev. 107 (1957) 1238.Google Scholar
  10. 10.
    W. W. Piper and W. L. Roth, Phys. Rev. 92 (1953) 503.Google Scholar
  11. 11.
    G. Cheroff and S. P. Keller, Phys. Rev. 111 (1958) 98.Google Scholar
  12. 12.
    S. G. Ellis, F. Herman, E. E. Loebner, W. J. Merz, C. W. Struck, and J. G. White, Phys. Rev. 109 (1958) 1860.Google Scholar
  13. 13.
    W. Merz, Helv. Phys. Acta. 31 (1958) 625.Google Scholar
  14. 14.
    A. Lempicki, Phys. Rev. 113 (1959) 1204.Google Scholar
  15. 15.
    International Conference on Beryllium Oxide (Sydney, Australia, 1963), J. Nucl. Mat. 14 (1964).Google Scholar
  16. 16.
    S. B. Austerman and K. T. Miller, Phys. Stat. Sol. 11 (1965) 241.Google Scholar
  17. 17.
    G. G. Bentle and R. M. Kniefel, J. Am. Ceram. Soc. 48 (1965) 570.Google Scholar
  18. 18.
    W. L. Barmore and R. R. Vandervoort, J. Am. Ceram. Soc. 48 (1965) 499.Google Scholar
  19. 19.
    S. B. Austerman, D. A. Berlincourt, and H. H. A. Krueger, J. Appl. Phys. 34 (1963) 339–341.Google Scholar
  20. 20.
    A. M. Degoar, J. Doulat, and B. Dreyfus, J. Nucl. Mat. 17 (1965) 159–166.Google Scholar
  21. 21.
    S. B. Austerman, Bull. Am. Phys. Soc. Ser II 7 (1962) 607.Google Scholar
  22. 22.
    S. B. Austerman, J. Am Ceram. Soc. 46 (1963) 6–10.Google Scholar
  23. 23.
    S. B. Austerman, J. Nucl. Mat. 14 (1964) 225.Google Scholar
  24. 24.
    H. W. Newkirk and D. K. Smith, Am. Mineral. 50 (1965) 44–72.Google Scholar
  25. 25.
    W. G. Gehman, J. Chem. Education 40 (1963) 54.Google Scholar
  26. 26.
    W. G. Gehman, Acta Cryst. 17 (1964) 1516.Google Scholar
  27. 27.
    W. G. Gehman and S. B. Austerman, Acta. Cryst. 18 (1965) 375.Google Scholar
  28. 28.
    D. K. Smith, H. W. Newkirk, and J. S. Kahn, J. Electrochem. Society III (1964) 78.Google Scholar
  29. 29.
    R. C. Rau, J. Am. Ceram. Soc. 46 (1963) 484.Google Scholar
  30. 30.
    IRE Standards on Piezoelectric Crystals (1949), Proc. IRE 37 (1949) 1378.Google Scholar
  31. 31.
    S. B. Austerman, J. B. Newkirk, H. W. Newkirk, and d. K. Smith (to be published).Google Scholar
  32. 32.
    C. F. Cline and J. S. Kahn, J. Electrochem. Soc. 110 (1963) 773–5.Google Scholar
  33. 33.
    S. B. Austerman, J. B. Newkirk, and D. K. Smith, J. Appl. Phys. 36 (1965) 3815.Google Scholar
  34. 34.
    H. Blank, P. Delavignette, R. Gevers, and S. Amelinckx, Phys. Stat. Sol. 7 (1964) 747–764.Google Scholar
  35. 35.
    S. B. Austerman, D. K. Smith, and H. W. Newkirk, “Growth-Related Defects and Growth Processes in BeO Crystals”, presented at the International Conference on Crystal Growth (Boston, June 1966). To be published in J. Phys. Chem. Sol. Google Scholar
  36. 36.
    J. W. Faust, Jr., and H. F. John, J. Phys. Chem. 25 (1964) 1407–1415.Google Scholar
  37. 37.
    A. R. Reinberg, J. Chem. Phys. 41 (1964) 850–5.Google Scholar
  38. 38.
    S. B. Austerman and J. W. Wagner, J. Am. Ceram. Soc. 49 (1966) 94–99.Google Scholar
  39. 39.
    P. L. Pratt, R. Chang, and C. W. A. Newey, Appl. Phys. Letters 3 (1963) 83.Google Scholar
  40. 40.
    H. W. Newkirk and D. K. Smith came to the same conclusion in their independent studies (private communication).Google Scholar
  41. 41.
    M. Hart, Appl. Phys. Letters 7 (1965) 96–8.Google Scholar
  42. 42.
    R. W. Cahn, Advances in Physics 3 (1954) 363.Google Scholar
  43. 43.
    G. Friedel, “Lecons de Crystallographie” (Paris, Berger-Levrault, 1926).Google Scholar
  44. 44.
    D. K. Smith, C. F. Cline, and S. B. Austerman, Acta Cryst. 18 (1965) 393.Google Scholar
  45. 44a.
    A. R. Verma and P. Krishna, “Polymorphism and Polytypism in Crystals” (Wiley, New York, 1966). (Added at proof stage.)Google Scholar
  46. 45.
    E. Parthé, “Crystal Chemistry of Tetrahedral Structures” (Gordon and Breach, Science Publishers, Inc., New York, 1964).Google Scholar
  47. 46.
    H. Blank, P. Delavignette, and S. Amelinckx, Phys. Stat. Sol. 2 (1962) 1660.Google Scholar
  48. 47.
    E. J. M. Kendall, Phys. Letters 8 (1964) 237–8.Google Scholar
  49. 48.
    A. H. Willis and K. Dearborn (private communication).Google Scholar
  50. 49.
    R. C. Rau, J. Am. Ceram. Soc. 47 (1964) 179–184.Google Scholar
  51. 50.
    O. Brafman, E. Alexander, B. S. Fraenkel, Z. H. Kalman, and I. T. Steinberger, J. Appl. Phys. 35 (1964) 1855.Google Scholar
  52. 51.
    E. P. Warekois, M. C. Lavine, A. N. Mariano, and H. C. Gatos, J. Appl. Phys. 33 (1962) 690.Google Scholar
  53. 52.
    H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 427.Google Scholar
  54. 53.
    N. W. Thibault, Am. Mineral. 29 (1944) 249, 327.Google Scholar

Copyright information

© Chapman and Hall 1966

Authors and Affiliations

  • Stanley B. Austerman
    • 1
  • William G. Gehman
    • 1
  1. 1.Atomics InternationalCanoga ParkUSA

Personalised recommendations