Skip to main content
Log in

The inversion twin: Prototype in beryllium oxide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The inversion twin is an uncommon fault that potentially can be found in the wurtzite- and sphalerite-type crystal structures and related rhombohedral structures, all of which are hemimorphic and possess a polar axis parallel to the c-axis. The twin structure involves exact inversion of the sense of polarity across a transition region (boundary) of variable orientation and complexity. Although several examples of possible but uncertain occurrence of the twin have been noted in other materials, only in beryllium oxide crystals has it been found to occur with abundance and on a macroscopic scale. The inversion twin, as it occurs in BeO, is described in detail. Existence and geometry of the twin is evident from crystal morphology and chemical and mechanical properties. It is suggested that the twin boundary may be stabilised and its energy lowered by the presence of aliovalent impurities along the boundary. Relation of the inversion twin to other types of faults is considered briefly. Previous discussions and presentation of new data in up-to-date assessment of the inversion twin are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aminoff and G. Broomé, Z. Krist. 80 (1931) 355.

    Google Scholar 

  2. L. W. Strock and V. A. Brophy, Am. Min. 40 (1956) 94.

    Google Scholar 

  3. L. W. Strock, Acta Cryst. 10 (1957) 840.

    Google Scholar 

  4. L. W. Strock, V. A. Brophy, and T. E. Peters, Electrochem. Soc. Meeting (New York, April 1958).

  5. L. W. Strock, Illuminating Engineering 55 (1960) 24.

    Google Scholar 

  6. W. F. Knippenberg, Philips Res. Repts. 18 (1963) 161–274.

    Google Scholar 

  7. H. D. Witzke, Phys. Stat. Sol. 2 (1962) 1109.

    Google Scholar 

  8. J. L. Birman, “Advances in Semiconductor Science” (Pergamon Press, New York, 1959), p. 35.

    Google Scholar 

  9. A. Lempicki, D. R. Frankel, and V. A. Brophy, Phys. Rev. 107 (1957) 1238.

    Google Scholar 

  10. W. W. Piper and W. L. Roth, Phys. Rev. 92 (1953) 503.

    Google Scholar 

  11. G. Cheroff and S. P. Keller, Phys. Rev. 111 (1958) 98.

    Google Scholar 

  12. S. G. Ellis, F. Herman, E. E. Loebner, W. J. Merz, C. W. Struck, and J. G. White, Phys. Rev. 109 (1958) 1860.

    Google Scholar 

  13. W. Merz, Helv. Phys. Acta. 31 (1958) 625.

    Google Scholar 

  14. A. Lempicki, Phys. Rev. 113 (1959) 1204.

    Google Scholar 

  15. International Conference on Beryllium Oxide (Sydney, Australia, 1963), J. Nucl. Mat. 14 (1964).

  16. S. B. Austerman and K. T. Miller, Phys. Stat. Sol. 11 (1965) 241.

    Google Scholar 

  17. G. G. Bentle and R. M. Kniefel, J. Am. Ceram. Soc. 48 (1965) 570.

    Google Scholar 

  18. W. L. Barmore and R. R. Vandervoort, J. Am. Ceram. Soc. 48 (1965) 499.

    Google Scholar 

  19. S. B. Austerman, D. A. Berlincourt, and H. H. A. Krueger, J. Appl. Phys. 34 (1963) 339–341.

    Google Scholar 

  20. A. M. Degoar, J. Doulat, and B. Dreyfus, J. Nucl. Mat. 17 (1965) 159–166.

    Google Scholar 

  21. S. B. Austerman, Bull. Am. Phys. Soc. Ser II 7 (1962) 607.

    Google Scholar 

  22. S. B. Austerman, J. Am Ceram. Soc. 46 (1963) 6–10.

    Google Scholar 

  23. S. B. Austerman, J. Nucl. Mat. 14 (1964) 225.

    Google Scholar 

  24. H. W. Newkirk and D. K. Smith, Am. Mineral. 50 (1965) 44–72.

    Google Scholar 

  25. W. G. Gehman, J. Chem. Education 40 (1963) 54.

    Google Scholar 

  26. W. G. Gehman, Acta Cryst. 17 (1964) 1516.

    Google Scholar 

  27. W. G. Gehman and S. B. Austerman, Acta. Cryst. 18 (1965) 375.

    Google Scholar 

  28. D. K. Smith, H. W. Newkirk, and J. S. Kahn, J. Electrochem. Society III (1964) 78.

    Google Scholar 

  29. R. C. Rau, J. Am. Ceram. Soc. 46 (1963) 484.

    Google Scholar 

  30. IRE Standards on Piezoelectric Crystals (1949), Proc. IRE 37 (1949) 1378.

    Google Scholar 

  31. S. B. Austerman, J. B. Newkirk, H. W. Newkirk, and d. K. Smith (to be published).

  32. C. F. Cline and J. S. Kahn, J. Electrochem. Soc. 110 (1963) 773–5.

    Google Scholar 

  33. S. B. Austerman, J. B. Newkirk, and D. K. Smith, J. Appl. Phys. 36 (1965) 3815.

    Google Scholar 

  34. H. Blank, P. Delavignette, R. Gevers, and S. Amelinckx, Phys. Stat. Sol. 7 (1964) 747–764.

    Google Scholar 

  35. S. B. Austerman, D. K. Smith, and H. W. Newkirk, “Growth-Related Defects and Growth Processes in BeO Crystals”, presented at the International Conference on Crystal Growth (Boston, June 1966). To be published in J. Phys. Chem. Sol.

  36. J. W. Faust, Jr., and H. F. John, J. Phys. Chem. 25 (1964) 1407–1415.

    Google Scholar 

  37. A. R. Reinberg, J. Chem. Phys. 41 (1964) 850–5.

    Google Scholar 

  38. S. B. Austerman and J. W. Wagner, J. Am. Ceram. Soc. 49 (1966) 94–99.

    Google Scholar 

  39. P. L. Pratt, R. Chang, and C. W. A. Newey, Appl. Phys. Letters 3 (1963) 83.

    Google Scholar 

  40. H. W. Newkirk and D. K. Smith came to the same conclusion in their independent studies (private communication).

  41. M. Hart, Appl. Phys. Letters 7 (1965) 96–8.

    Google Scholar 

  42. R. W. Cahn, Advances in Physics 3 (1954) 363.

    Google Scholar 

  43. G. Friedel, “Lecons de Crystallographie” (Paris, Berger-Levrault, 1926).

    Google Scholar 

  44. D. K. Smith, C. F. Cline, and S. B. Austerman, Acta Cryst. 18 (1965) 393.

    Google Scholar 

  45. A. R. Verma and P. Krishna, “Polymorphism and Polytypism in Crystals” (Wiley, New York, 1966). (Added at proof stage.)

    Google Scholar 

  46. E. Parthé, “Crystal Chemistry of Tetrahedral Structures” (Gordon and Breach, Science Publishers, Inc., New York, 1964).

    Google Scholar 

  47. H. Blank, P. Delavignette, and S. Amelinckx, Phys. Stat. Sol. 2 (1962) 1660.

    Google Scholar 

  48. E. J. M. Kendall, Phys. Letters 8 (1964) 237–8.

    Google Scholar 

  49. A. H. Willis and K. Dearborn (private communication).

  50. R. C. Rau, J. Am. Ceram. Soc. 47 (1964) 179–184.

    Google Scholar 

  51. O. Brafman, E. Alexander, B. S. Fraenkel, Z. H. Kalman, and I. T. Steinberger, J. Appl. Phys. 35 (1964) 1855.

    Google Scholar 

  52. E. P. Warekois, M. C. Lavine, A. N. Mariano, and H. C. Gatos, J. Appl. Phys. 33 (1962) 690.

    Google Scholar 

  53. H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 427.

    Google Scholar 

  54. N. W. Thibault, Am. Mineral. 29 (1944) 249, 327.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Based on work sponsored by the Fuels and Materials Branch, Division of Reactors and Technology, United States Atomic Energy Commission, under Contract AT-(11-1)-GEN-8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austerman, S.B., Gehman, W.G. The inversion twin: Prototype in beryllium oxide. J Mater Sci 1, 249–260 (1966). https://doi.org/10.1007/BF00550173

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550173

Keywords

Navigation