Skip to main content
Log in

Thermoluminescence and activation energies in Al2O3, MgO and LiF (TLD-100)

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoluminescent characteristics of Al2O3 and MgO single crystal samples obtained from several sources have been determined after X-ray and ultra-violet irradiation. The glow peak spectrum above room temperature, the emission spectrum, the impurity content and distribution and the activation parameters for the observed glow peaks are reported. Czochralski-grown Al2O3 samples indicate a major glow peak, the position of which shifts to lower temperatures with increasing dose, an observation with interesting implications in thermoluminescent radiation dosimetry. MgO also has characteristics which could be useful in dosimetry, especially in the ultra-violet region. Activation parameter comparisons are made for the observed glow peaks in Al2O3 and MgO and in LiF (TLD-100). After considering a number of theoretical and experimental problems and uncertainties, it is concluded that determinations of activation parameters are less meaningful than observations of other thermoluminescent characteristics in the understanding of thermoluminescent behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. H. Attix, “Luminescence Dosimetry” (USAEC, 1967), available from CFSTI as Conf 6506 37.

  2. J. R. Cameron, N. Suntharalingam, and G. N. Kenney, “Luminescence Dosimetry” (University of Wisconsin Press, London, 1968).

    Google Scholar 

  3. M. J. Rossiter, D. B. Rees-Evans, S. C. Ellis, and J. M. Griffiths, J. Phys. D: Appl. Phys. 4 (1971) 1245.

    Google Scholar 

  4. L. A. Dewerd and T. G. Stoebe, Proc. Third Int'l. Conf. Luminescence Dosimetry, Riso, Denmark (1971).

  5. G. A. Dussel and R. H. Bube, Phys. Rev. 155 (1967) 764.

    Google Scholar 

  6. P. Kelly and P. Braunlich, Phys. Rev. B1 (1970) 1587.

    Google Scholar 

  7. I. J. Saunders, J. Phys. C: Solid State Phys. 2 (1969) 2181.

    Google Scholar 

  8. H. S. Parker and C. H. Harding, J. Amer. Ceram. Soc. 53 (1970) 583.

    Google Scholar 

  9. D. W. Cooke and D. C. Sutherland, paper presented at the Southeastern section of the American Physical Society, Gainsville, Florida, USA (1969).

  10. J. B. Van Tright and B. A. M. Van Der Kraay, J. Phys. Chem. Solids 30 (1969) 1629.

    Google Scholar 

  11. A. F. Gabrysh, J. M. Kennedy, H. Eyring, and V. R. Johnson, Phys. Rev. 131 (1963) 1543.

    Google Scholar 

  12. W. G. Buckman, D. C. Sutherland, and D. W. Cooke, Proceedings of the Fourth Annual Midyear Topical Symposium of the National Health Physics Society (1970) p. 407.

  13. M. Srinivasan and T. G. Stoebe, J. Appl. Phys. 41 (1970) 3726.

    Google Scholar 

  14. J. E. Wertz, L. C. Hall, J. Helgeson, C. C. Chao, and W. S. Dykoski, “Interaction of Radiation with Solids” (Plenum Press, New York, 1967) p. 617.

    Google Scholar 

  15. B. Thomas and E. Houston, Brit. J. Appl. Phys. 15 (1964) 953.

    Google Scholar 

  16. R. L. Hansler and W. G. Segelken, J. Phys. Chem. Solids 13 (1960) 124.

    Google Scholar 

  17. W. M. Ziniker, J. K. Merrow and J. I. Mueller, J. Phys. Chem. Solids 33 (1972) 1619.

    Google Scholar 

  18. J. T. Randall and M. H. F. Wilkins, Proc. R. Soc. A. 184 (1945) 366.

    Google Scholar 

  19. G. F. J. Garlick and A. F. Gibson, Proc. Phys. Soc. 60 (1948) 574.

    Google Scholar 

  20. P. R. Moran and E. B. Podgorsak, USAEC Progress Report COO-1105-164 under contract AT(11-1) 1105 (1971).

  21. P. R. Moran and J. R. Cameron, Proc. Third Int'l. Conf. Luminescence Dosimetry, Riso, Denmark (1971).

  22. R. Chen, J. Appl. Phys. 40 (1969) 570.

    Google Scholar 

  23. P. J. Kelly and M. J. Laubitz, Can. J. Phys. 45 (1967) 311.

    Google Scholar 

  24. T. M. Searle and A. M. Glass, J. Phys. Chem. Solids 29 (1968) 609.

    Google Scholar 

  25. E. T. Rodine and P. L. Land, Phys. Rev. B4 (1971) 2701.

    Google Scholar 

  26. D. W. Zimmerman, C. R. Rhyner, and J. R. Cameron, Health Physics 12 (1966) 525.

    Google Scholar 

  27. J. H. Jackson and A. M. Harris, J. Phys. C: Solid State Phys. 3 (1970) 1967.

    Google Scholar 

  28. L. D. Miller and R. H. Bube, J. Appl. Phys. 41 (1970) 3687.

    Google Scholar 

  29. L. I. Grosswiener, ibid 24 (1953) 1306.

    Google Scholar 

  30. C. B. Luschik, Dokl. Acad. Nauk. SSSR 101 (1955) 641.

    Google Scholar 

  31. E. Yamaka, Phys. Rev. 96 (1954) 293.

    Google Scholar 

  32. H. G. Hecht and E. D. Taylor, J. Phys. Chem. Solids 28 (1967) 1599.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziniker, W.M., Rusin, J.M. & Stoebe, T.G. Thermoluminescence and activation energies in Al2O3, MgO and LiF (TLD-100). J Mater Sci 8, 407–414 (1973). https://doi.org/10.1007/BF00550162

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550162

Keywords

Navigation