Journal of Materials Science

, Volume 8, Issue 3, pp 373–381 | Cite as

On the role of grain-boundary migration during the creep of zinc

  • Vakil Singh
  • P. Rama Rao
  • D. M. R. Taplin
Papers

Abstract

Constant engineering strain-rate tensile tests have been carried out in the temperature range 20 to 150‡C on high purity Zn, Zn-0.14 at. % Cu (alloy C) and Zn-0.16 at. % Al (alloy A) alloys. Measurements of angular distribution of orientations of grain boundaries have been used to study grain-boundary migration during deformation. Significant cavitation, with increasing propensity at higher test temperatures, occurred in the two alloys but not in pure Zn. A striking feature of the observations in pure Zn and alloy C, as the test temperature was raised, was the formation and subsequent decay of a diamond pattern of uncavitated grain boundaries, a majority of which were preferentially aligned at ∼ 45‡ to the stress axis. By comparison the changes in the angular distribution of grain boundaries was least marked in alloy A. Cavitation was observed in alloy C to maintain grain boundaries in the 45‡ orientation. At the test temperature of 150‡C alloy C, which was prone to the formation of diamond grain-boundary configuration, developed much larger volume fraction of cavities than alloy A. These results are discussed in terms of the different distribution coefficients of Cu and Al in Zn, the different rates of grain-boundary migration in pure Zn and the two alloys and the differences in the substructural features (cells) formed during high-temperature deformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. R. Taplin, P. Rama Rao, and V. V. P. K. Rao, Proceedings of Indian Institute of Metals Symposium on Recent Developments in Metallurgical Science and Technology, New Delhi (1972).Google Scholar
  2. 2.
    K. T. Aust, Proceedings of Conference on Interfaces, Ed. R. C. Gifkins (Butterworths, London, 1969) p. 295.Google Scholar
  3. 3.
    R. L. Bell and T. G. Langdon, ibid p. 115.Google Scholar
  4. 4.
    D. M. R. Taplin, Met. Eng. Quart. 10 (1970) 795.Google Scholar
  5. 5.
    K. V. Snowden, Phil. Mag. 6 (1961) 321.Google Scholar
  6. 6.
    Idem, ibid 14 (1966) 1019.Google Scholar
  7. 7.
    R. P. Skelton, Met. Sci. J. 1 (1967) 140.Google Scholar
  8. 8.
    H. D. Williams and C. W. Corti, ibid 2 (1968) 28.Google Scholar
  9. 9.
    G. Wigmore and G. C. Smith, ibid 5 (1971) 58.Google Scholar
  10. 10.
    H. J. Westwood and D. M. R. Taplin, Met. Trans. 3 (1972) 1959.Google Scholar
  11. 11.
    K. T. Aust, R. E. Hanneman, P. Niessen, and J. H. Westbrook, Acta Metallurgica, 16 (1968) 291.Google Scholar
  12. 12.
    V. V. P. Kutumba Rao, D. M. R. Taplin, and P. Rama Rao, Trans. Ind. Inst. Metals 23 (1970) 61.Google Scholar
  13. 13.
    V. V. P. Kutumba Rao and P. Rama Rao, Metallography 5 (1972) 94.Google Scholar
  14. 14.
    R. L. Fullman, Trans. AIME 197 (1953) 447.Google Scholar
  15. 15.
    K. H. Roth and D. M. R. Taplin, unpublished work.Google Scholar
  16. 16.
    R. A. Oriani, Acta Metallurgica 7 (1959) 62.Google Scholar
  17. 17.
    P. Niessen, Ph.D. Thesis, University of Toronto, 1964.Google Scholar
  18. 18.
    P. Niessen and W. C. Winegard, J. Inst. Metals 94 (1966) 31.Google Scholar
  19. 19.
    K. T. Aust and J. W. Rutter, “Recovery and Recrystallization of Metals” Ed. L. Himmel (Interscience, New York, 1963) p. 131.Google Scholar
  20. 20.
    J. M. Hedgepath, National Advisory Committee for Aeronautics (NACA) Technical Note No. 2777.Google Scholar
  21. 21.
    J. A. Ramsey, J. Inst. Metals 80 (1951–52) 167.Google Scholar
  22. 22.
    R. W. Cahn, I. J. Bear, and R. L. Bell, ibid 82 (1953–54) 481.Google Scholar
  23. 23.
    R. C. Gifkins and J. W. Kelly, Acta Metallurgica 1 (1953) 320.Google Scholar
  24. 24.
    N. J. Grant and A. R. Chaudhuri, “Creep and Recovery” (ASM, Cleveland, Ohio, 1963) p. 284.Google Scholar
  25. 25.
    P. A. Beck, Adv. Phys. 3 (1954) 245.Google Scholar
  26. 26.
    W. A. Wood, G. R. Wilms, and W. A. Rachinger, J. Inst. Metals 79 (1951) 159.Google Scholar
  27. 27.
    G. B. Greenough, C. M. Bateman, and E. M. Smith, ibid 80 (1951–52) 545.Google Scholar
  28. 28.
    R. C. Gifkins, ibid 79 (1951) 233.Google Scholar
  29. 29.
    J. E. Harris, Trans. Met. Soc. AIME 233 (1965) 1509.Google Scholar
  30. 30.
    J. Intrater and E. S. Machlin, Acta Metallurgica 7 (1959) 140.Google Scholar
  31. 31.
    R. G. Fleck, M.A.Sc. Thesis, University of Waterloo, Ontario (1971).Google Scholar
  32. 32.
    A. E. B. Presland and R. I. Hutchinson, J. inst. Metals 92 (1963–64) 264.Google Scholar
  33. 33.
    P. W. Davies and B. Wilshire, Phil. Mag. 11 (1965) 189.Google Scholar
  34. 34.
    A. Gittins and H. D. Williams, ibid 16 (1967) 849.Google Scholar
  35. 35.
    D. M. R. Taplin, ibid 20 (1969) 1079.Google Scholar
  36. 36.
    A. Gittins, Met. Sci. J. 4 (1970) 186.Google Scholar
  37. 37.
    A. L. Wingrove and D. M. R. Taplin, S.M.D. Report 24 of the University of Waterloo, Ontario (1969).Google Scholar
  38. 38.
    M. Kitagawa, T. & A.M. Report No. 319 of the Department of Theoretical and Applied Mechanics, University of Illinois, Urbana (1972).Google Scholar
  39. 39.
    H. J. Westwood and D. M. R. Taplin, unpublished work.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1973

Authors and Affiliations

  • Vakil Singh
    • 1
  • P. Rama Rao
    • 1
  • D. M. R. Taplin
    • 2
  1. 1.Department of Metallurgical EngineeringBanaras Hindu UniversityVaranasiIndia
  2. 2.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations