Virchows Archiv A

, Volume 359, Issue 3, pp 213–222 | Cite as

Comparisons of the texture of amyloid, collagen and alzheimer cells

A polarization microscopic-histochemical study
  • D. Katenkamp
  • D. Stiller


This investigation was performed in order to determine textural similarities and differences between variable amyloid types. Alzheimer fibrils and collagen were also compared with these structures. For this reason we used tissue specimens of secondary amyloid (so-called perireticular amyloid), primary amyloid (so-called pericollagen amyloid), senile plaques, Alzheimer cells and collagen of tendons, scars, atherosclerotic aortes, rheumatic synovial membranes and of a dura mater cerebri, and examined these fibre types by polarization optical-histochemical methods.

The findings allowed the conclusion that the texture of primary and secondary amyloid is not the same, because of differences in the fibrillar texture and probably of a distinctive interfibrillar substance in each case. Senile plaques seem to be a further variant of amyloid; some behaved as primary, and some as secondary amyloid. Alzheimer fibrils showed structural resemblance on senile plaques, although they contain no amyloid fibrils. The staining features of collagen clearly revealed that there is no structural relationship with amyloid, and therefore a direct transformation of collagen to amyloid and vice versa must be refuted. The collagen fibre types showed a variable texture because of their different mucopolysaccharide content. An important result is the changed hyaluronic acid metabolism of the rheumatic collagen fibres reported by other investigators.


Hyaluronic Acid Collagen Fibre Fibre Type Senile Plaque Amyloid Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M.: A p-dimethylaminobenzaldehyde nitrite method for the histochemical demonstration of tryptophane and related compounds. J. clin. Path. 10, 56–62 (1957).Google Scholar
  2. Battaglia, S.: Contribution to Caesar's report: Elektronenmikroskopische Befunde am Amyloid. In: Fortschritte der Amyloidforschung, hrsg. von G. Bruns, W. Zschiesche und S. Fritsch, Nova Acta Leopoldina 31, 101–102 (1966).Google Scholar
  3. Battaglia, S., Matturri, L.: Mucoplysaccharides in amyloidosis. Lancet 1965 I, 1282–1283.Google Scholar
  4. Benditt, E. P., Eriksen, N.: Chemical classes of amyloid substance. Amer. J. Path. 65, 231–252 (1971).Google Scholar
  5. Benditt, E. P., Eriksen, N.: Chemical characteristics of the substance of typical amyloidosis in monkeys. Acta path. microbiol. scand. Section A 80, Suppl. 233, 103–108 (1972).Google Scholar
  6. Benditt, E. P., Eriksen, N., Hermodson, M. A., Ericsson, L. H.: The major proteins of human and monkey amyloid substance: common properties including unusual N-terminal amino acid sequences. FEBS Letters 19, 169–173 (1971).Google Scholar
  7. Berenson, G. S., Dalferes, E., Radhakrishnamurthy, B.: Glycosaminoglycans in experimental amyloidosis. Fed. Proc. 26, 300 (1967).Google Scholar
  8. Bonar, L., Cohen, A. S., Skinner, M. M.: Characterization of the amyloid fibril as a crossbeta protein. Proc. Soc. exp. Biol. (N.Y.) 131, 1373–1375 (1969).Google Scholar
  9. Burns, J., Pennock, C. A., Stoward, P. J.: The specifity of the staining of amyloid deposits with thioflavine T. J. Path. Bact. 94, 337–344 (1967).Google Scholar
  10. Burstone, M. S.: Histochemical methods for protein detection. In: Handbuch der Histochemie, hrsg. von W. Graumann und K. Neumann. Stuttgart: G. Fischer 1959.Google Scholar
  11. Castor, C. W., Dorstewitz, E. L., Rowe, K., Ritchie, J. C.: Abnormalities of connective tissue cells cultured from patients with rheumatoid arthritis. II. Defective regulation of hyaluronate and collagen formation. J. Lab. clin. Med. 77, 65–75 (1971).Google Scholar
  12. Clausen, J., Christensen, H. E.: Paraproteins and acid mucopolysaccharides in primary amyloidosis. Acta path. microbiol. scand. 60, 493–511 (1964).Google Scholar
  13. Ein, D., Kimura, S., Glenner, G. G.: An amyloid fibril protein of unknown origin: partial amino-acid sequence analysis. Biochem. biophys. Res. Commun. 46, 498–500 (1972).Google Scholar
  14. Glenner, G. G., Ein, D., Terry, W. D.: The immunglobulin origin of amyloid. Amer. J. Med. 52, 141–146 (1972).Google Scholar
  15. Glenner, G. G., Harada, M., Isersky, C., Cuatrecasas, P., Page, D., Keiser, H.: Human amyloid protein: diversity and uniformity. Biochem. biophys. Res. Commun. 41, 1013–1019 (1970).Google Scholar
  16. Glenner, G. G., Page, D., Isersky, C., Harada, M., Cuatrecasas, P., Eanes, E. D.: Murine amyloid fibril protein: isolation, purification and characterization. J. Histochem. Cytochem. 19, 16–28 (1971).Google Scholar
  17. Gueft, B., Kikkawa, Y., Hirschl, S.: An electron-microscopic study of amyloidosis from different species. In: Proceedings of the Symposium on Amyloidosis, ed. by E. Mandema, L. Ruinen, J. H. Scholten and A. S. Cohen, p. 172–182. Amsterdam: Excerpta Medica 1968.Google Scholar
  18. Highman, B.: Improved methods for demonstrating amyloid in paraffin section. Arch. Path. 41, 559–565 (1946).Google Scholar
  19. Katenkamp, D., Stiller, D.: Der Alzheimer'sche Symptomenkomplex (kongophile Angiopathie, senile Plaques und Alzheimersche Fibrillenveränderungen) und seine Beziehung zum Amyloid. Zbl. allg. Path. path. Anat. 114, 409–417 (1971).Google Scholar
  20. Katenkamp, D., Stiller, D.: Polarisationsoptisch-histochemische Untersuchungen zur Kongorotfärbung des Amyloid. Histochemie 29, 37–43 (1972).Google Scholar
  21. Lindner, J., Freytag, G.: Zur Amyloidentstehung. In: Fortschritte der Amyloidforschung, hrsg. von G. Bruns, W. Zschiesche and S. Fritsch. Nova Acta Leopoldina 31, 131–141 (1966).Google Scholar
  22. Luse, S. A., Smith, K. R.: The ultrastructure of senile plaques. Amer. J. Path. 44, 553–563 (1964).Google Scholar
  23. Miller, H. J., Rotman, Y., Ben-Shaul, Y., Ashkenazi, Y.: The dissoziation of the amyloid filament to subunits. Israel J. med. Sci. 4, 982–986 (1968).Google Scholar
  24. Missmahl, H. P.: Rectumbiopsie zum Nachweis der Amyloidose. Dtsch. med. Wschr. 88, 1783–1785 (1963).Google Scholar
  25. Missmahl, H. P.: Polarisationsoptische Befunde am Amyloid. In: Fortschritte der Amyloidforschung, hrsg. von G. Bruns, W. Zschiesche and S. Fritsch. Nova Acta Leopoldina 31, 79–85 (1966).Google Scholar
  26. Missmahl, H. P.: Reticulin and collagen as important factor for the localization of amyloid. The use of polarization microscopy as a tool in the detection of the composition of amyloid. In: Proceedings of the Symposium on Amyloidosis, ed. by E. Mandema, L. Ruinen, J. H. Scholten and A. S. Cohen, p. 22–29. Amsterdam: Excerpta Medica 1968.Google Scholar
  27. Nikaido, T., Austin, J., Rinehart, R., Trueb, L., Hutchinson, J., Stukenbrok, H., Miles, B.: Studies in ageing of the brain. I. Isolation and preliminary characterization of Alzheimer plaques and cores. Arch. Neurol. 25, 198–211 (1971).Google Scholar
  28. Pras, M., Zucker-Franklin, D., Rimon, A., Franklin, E. C.: Physical, chemical, and ultrastructural studies of water-soluble human amyloid fibrils. J. exp. Med. 130, 777–795 (1969).Google Scholar
  29. Puchtler, H., Sweat, F., Levine, M.: On the binding of congo red by amyloid. J. Histochem. Cytochem. 10, 355–364 (1962).Google Scholar
  30. Rodermund, O. E., Klingmüller, G.: Zur submikroskopischen Struktur des Amyloid. Arch. klin. exp. Derm. 236, 147–160 (1970).Google Scholar
  31. Romeis, B.: Mikroskopische Technik. München-Wien: R. Oldenburg (1968).Google Scholar
  32. Romhanyi, G.: Selective differentiation between amyloid and connective tissue structures based on the collagen specific topo-optical staining reaction with congo red. Virchows Arch. Abt. A 354, 209–222 (1971).Google Scholar
  33. Romhanyi, G.: Differences in ultrastructural organization of amyloid as revealed by sensitivity or resistance to induced proteolysis. Virchows Arch. Abt. A 357, 29–52 (1972).Google Scholar
  34. Romhanyi, G., Deák, G. Bukovinszky, A.: On the collagen-specific topo-optical staining reaction with congo red and its ultrastructural interpretation. Acta morph. Acad. Sci. hung. 18, 261–282 (1970).Google Scholar
  35. Scheuner, G., Hutschenreiter, J., Franz, H.: Modelle zur Erklärung des Zusammenhanges zwischen Metachromasie, Doppelbrechung und künstlichem Dichroismus an biologischen Objekten. Acta histochem. (Jena) 40, 23–28 (1971).Google Scholar
  36. Schlote, W.: Polarisationsoptisch differenzierbare Stadien der intraneuronalen Amyloidbildung bei Morbus Alzheimer. Verh. dtsch. Ges. Path. 52, 204–209 (1968).Google Scholar
  37. Schmitt, W., Beneke, G.: Die Amyloidbildung als Ausdruck einer altersbedingten Änderung der Syntheseleistung von Bindegewebszellen. Akt. Gerontol. 1, 649–652 (1971).Google Scholar
  38. Schwartz, P.: Über Amyloidose des Gehirns, der Langerhansschen Inseln und des Herzens alter Personen. Zbl. allg. Path. path. Anat. 108, 169–176 (1965).Google Scholar
  39. Spannhof, L.: Einführung in die Praxis der Histochemie. Stuttgart: G. Fischer 1967.Google Scholar
  40. Spicer, S. S., Henson, G. G.: Methods for localizing mucosubstances in epithelial and connective tissues. Meth. Achiev. exp. Path. 2, 78–91 (1967).Google Scholar
  41. Stiller, D., Katenkamp, D.: Zur Pathogenese der senilen Amyloidose. Virchows Arch. Abt. A 352, 209–218 (1971).Google Scholar
  42. Terry, R. D., Gonatas, N. K., Weiss, M.: Ultrastructural studies in Alzheimer's presenile dementia. Amer. J. Path. 44, 269–297 (1964).Google Scholar
  43. Williams, G., Gowenlock, A. H., Wynn, C.: Studies of collagen synthesis in experimental amyloidosis. Brit. J. exp. Path. 46, 408–412 (1965).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • D. Katenkamp
    • 1
  • D. Stiller
    • 1
  1. 1.Institute of PathologyFriedrich-Schiller-University of JenaGermany

Personalised recommendations