Advertisement

Journal of Materials Science

, Volume 6, Issue 3, pp 228–237 | Cite as

The variation in flow stress and microstructure during superplastic deformation of the Al-Cu eutectic

  • B. M. Watts
  • M. J. Stowell
  • D. M. Cottingham
Papers

Abstract

Stress-strain curves have been obtained for the superplastically deformed Al-Cu eutectic tested in tension under constant true strain-rate conditions. It is shown that constant flow stress conditions do not obtain and that, after an initial transient, the flow stress is linearly related to natural tensile strain. Optical metallography has been employed to follow the variation of both inter-phase particle separation and α-Al grain size with strain and it is concluded that the observed strain hardening is due mainly to grain coarsening.

Keywords

Polymer Grain Size Microstructure Stress Condition Strain Hardening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. A. Backofen, I. R. Turner, and D. H. Avery, Trans. Amer. Soc. Metals 57 (1964) 980.Google Scholar
  2. 2.
    D. H. Avery and W. A. Backofen, ibid 58 (1965) 551.Google Scholar
  3. 3.
    P. J. Martin and W. A. Backofen, ibid 60 (1967) 353.Google Scholar
  4. 4.
    T. H. Alden, Acta Metallurgica 15 (1967) 469.Google Scholar
  5. 5.
    D. Lee and W. A. Backofen, Trans. A.I.M.E. 239 (1967) 1034.Google Scholar
  6. 6.
    T. H. Alden, Trans. Amer. Soc. Metals 61 (1968) 559.Google Scholar
  7. 7.
    W. Zehr and W. A. Backofen, ibid 61 (1968) 300.Google Scholar
  8. 8.
    A. Karim and W. A. Backofen, Mat. Sci. Eng. 3 (1968/69) 306.Google Scholar
  9. 9.
    D. L. Holt, Trans. A.I.M.E. 242 (1968) 25.Google Scholar
  10. 10.
    A. Ball and M. M. Hutchison, Met. Sci. J. 3 (1969) 1.Google Scholar
  11. 11.
    H. W. Hayden and J. H. Brophy, Trans. Amer. Soc. Metals 61 (1968) 542.Google Scholar
  12. 12.
    W. B. Morrison, ibid 61 (1968) 423.Google Scholar
  13. 13.
    R. Kossowsky and J. H. Bechtold, Trans. A.I.M.E. 242 (1968) 717.Google Scholar
  14. 14.
    M. J. Stowell, J. L. Robertson, and B. M. Watts, Met. Sci. J. 3 (1969) 41.Google Scholar
  15. 15.
    D. L. Holt and W. A. Backofen, Trans. Amer. Soc. Metals 59 (1966) 755.Google Scholar
  16. 16.
    J. H. Hensler, J. Inst. Metals 96 (1968) 190.Google Scholar
  17. 17.
    W. B. Morrison, Trans. A.I.M.E. 242 (1968) 2221.Google Scholar
  18. 18.
    J. Hedworth and M. J. Stowell, to be published.Google Scholar
  19. 19.
    R. J. Lindinger, R. C. Gibson, and J. H. Brophy, Trans. Amer. Soc. Metals 62 (1969) 231.Google Scholar
  20. 20.
    G. Mima, T. Yamane, and C. Hayashi, J. Jap. Inst. Metals 32 (1968) 224.Google Scholar
  21. 21.
    G. Beghi, R. Matera, and G. Piatti, J. Mater. Sci. 5 (1970) 820.Google Scholar
  22. 22.
    E. P. Lautenschlager and J. O. Brittain, Rev. Sci. Instr. 39 (1968) 1563.Google Scholar

Copyright information

© Chapman and Hall Ltd 1971

Authors and Affiliations

  • B. M. Watts
    • 1
  • M. J. Stowell
    • 1
  • D. M. Cottingham
    • 2
  1. 1.Tube Investments Research LaboratoriesSaffron WaldenUK
  2. 2.The Weldless Steel Tube Co LtdWednesfieldUK

Personalised recommendations