Journal of Materials Science

, Volume 5, Issue 5, pp 434–444 | Cite as

The activation areas for creep deformation

  • N. Balasubramanian
  • J. C. M. Li
Papers

Abstract

The activation areas for creep deformation are collected and examined in the light of many material and deformation variables. The activation area is A*= (kT/b) (∂ In \(\dot \in \)/∂τ*) T where k is Boltzmann's constant, T the absolute temperature, b the Burgers vector, \(\dot \in \) the steady state creep rate, and τ* the effective shear stress. It is found that within a factor of 5, there is a general correlation between activation area and stress for all metals, alloys, semiconductors and ionic crystals. A jog-limited dislocation motion with a distribution of jog spacings is suggested as a possible mechanism for this behaviour. Some limitations for the jog mechanism are discussed.

Keywords

Polymer Steady State Shear Stress Absolute Temperature Activation Area 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Conrad and W. Hayes, Trans. ASM 56 (1963) 249.Google Scholar
  2. 2.
    J. E. Dorn and S. Rajnak, Trans TMS-AIME 230 (1964) 1052.Google Scholar
  3. 3.
    J. E. Dorn, “Creep and Recovery” (Am. Soc. Metals, Metals Park, Ohio, 1957) p. 255.Google Scholar
  4. 4.
    G. T. Chevalier, P. Mccornick, and A. L. Ruoff, J. Appl. Phys. 38 (1967) 3697.Google Scholar
  5. 5.
    J. C. M. Li, “Dislocation Dynamics”, edited by A. R. Rosenfield et al (McGraw-Hill, New York, 1968) p. 87.Google Scholar
  6. 6.
    F. R. N. Nabarro, in “Strength of Solids” (The Physical Society, London, 1948) p. 75.Google Scholar
  7. 7.
    C. Herring, J. Appl. Phys. 21 (1950) 437.Google Scholar
  8. 8.
    L. J. Cuddy, Met. Trans. 1 (1970) 395.Google Scholar
  9. 9.
    J. Weertman, ibid 218 (1960) 207.Google Scholar
  10. 10.
    Idem, J. Mech. Phys. Solids 4 (1956) 230.Google Scholar
  11. 11.
    J. H. Harper and J. E. Dorn, Acta Met. 5 (1959) 654.Google Scholar
  12. 12.
    I. S. Servi and N. J. Grant, Trans. TMS-AIME 191 (1951) 917.Google Scholar
  13. 13.
    S. K. Mitra and D. Mclean, Met. Sci. J. 1 (1967) 192.Google Scholar
  14. 14.
    H. Laks, C. D. Wiseman, O. D. Sherby, and J. E. Dorn, Institute of Eng. Res., University of California, Series No. 22, Issue 37 (1954).Google Scholar
  15. 15.
    S. Dushman, L. W. Dunbar, and H. Huthsteiner, J. Appl. Phys. 15 (1944) 108.Google Scholar
  16. 16.
    J. E. Dorn, NPL Conference on Creep and Fracture, (Philosophical Library, Inc., New York, 1957) p. 89.Google Scholar
  17. 17.
    C. R. Barrett and O. D. Sherby, Trans. TMS-AIME 230 (1964) 1322.Google Scholar
  18. 18.
    P. Feltham and J. D. Meakin, Acta Met. 7 (1959) 614.Google Scholar
  19. 19.
    R. M. Bonesteel and O. D. Sherby, ibid 14 (1966) 385.Google Scholar
  20. 20.
    P. Feltham and G. J. Copley, Phil. Mag. 5 (1960) 649.Google Scholar
  21. 21.
    M. Herman and N. Brown, Trans. TMS-AIME 206 (1956) 604.Google Scholar
  22. 22.
    N. Brown and D. R. Lenton, Acta Met. 17 (1969) 669.Google Scholar
  23. 23.
    O. D. Sherby, Trans. TMS-AIME 212 (1958) 708.Google Scholar
  24. 24.
    D. E. Munson and R. A. Huggins, DMS Rept., No. 63-4, Stanford University (1963).Google Scholar
  25. 25.
    E. M. Howard, W. L. Barmore, J. D. Mote, and J. E. Dorn, Trans. TMS-AIME 227 (1963) 1061.Google Scholar
  26. 26.
    J. Weertman and P. Shahnian, ibid 206 (1956) 1223.Google Scholar
  27. 27.
    J. P. Dennison, R. J. Llewellyn, and B. Wilshire, J. Inst. Met. 95 (1967) 115.Google Scholar
  28. 28.
    C. M. Sellars and A. G. Quarrell, ibid 90 (1961) 329.Google Scholar
  29. 29.
    C. A. Pampillo and A. E. Vidoz, Acta Met. 14 (1966) 313.Google Scholar
  30. 30.
    Mcg. Tegart and O. D. Sherby, Phil. Mag. 3 (1958) 1287.Google Scholar
  31. 31.
    Mcg. Tegart, Acta Met. 9 (1961) 614.Google Scholar
  32. 32.
    J. E. Flinn and D. E. Munson, Phil. Mag. 10 (1964) 861.Google Scholar
  33. 33.
    J. E. Flinn and S. A. Duran, Trans. TMS-AIME 236 (1966) 1056.Google Scholar
  34. 34.
    W. D. G. Bennett and G. Summer, “The Metallurgy of Beryllium” (The Inst. of Metals, London, 1963) p. 177.Google Scholar
  35. 35.
    A. J. Ardell and O. D. Sherby, Trans. TMS-AIME 239 (1967) 1547.Google Scholar
  36. 36.
    A. J. Ardell, J. Appl. Phys. 37 (1966) 2910.Google Scholar
  37. 37.
    J. J. Gilman, ibid 36 (1965) 3195.Google Scholar
  38. 38.
    I. M. Bernstein, Trans. TMS-AIME 239 (1967) 1518.Google Scholar
  39. 39.
    R. W. Christy, Acta Met. 2 (1954) 284.Google Scholar
  40. 40.
    P. Haasen, Trans. Faraday Soc. 38 (1964) 191.Google Scholar
  41. 41.
    E. Peissker, P. Haasen, and H. Alexander, Phil. Mag. 7 (1962) 1279.Google Scholar
  42. 42.
    Y. Ishida, C. Y. Cheng, and J. E. Dorn, Trans. TMS-AIME 236 (1966) 964.Google Scholar
  43. 43.
    A. Lawley, J. A. Coll, and R. W. Cahn, ibid 218 (1960) 166.Google Scholar
  44. 44.
    O. D. Sherby and J. L. Lytton, ibid 206 (1956) 928.Google Scholar
  45. 45.
    C. R. Barrett, ibid 239 (1967) 1726.Google Scholar
  46. 46.
    F. Garofalo, W. D. Domis, and F. Von Gemmingen, ibid 230 (1964) 1460.Google Scholar
  47. 47.
    W. D. Klopp, W. R. Witzke, and P. O. Raffo, ibid 233 (1965) 1560.Google Scholar
  48. 48.
    H. Carvalhinhos and B. B. Argent, J. Inst. Met. 95 (1967) 364.Google Scholar
  49. 49.
    J. D. W. Rawson and B. B. Argent, J. Inst. Met. 95 (1967) 212.Google Scholar
  50. 50.
    R. H. Titran, AIME, Abs. Bulletin 2 (1967) No. 2, 91.Google Scholar
  51. 51.
    W. V. Green, Trans. TMS-AIME 223 (1965) 1818.Google Scholar
  52. 52.
    J. Weertman, J. Appl. Phys. 26 (1955) 1213.Google Scholar
  53. 53.
    Idem, ibid 28 (1957) 362.Google Scholar
  54. 54.
    Idem, ibid 28 (1957) 1185.Google Scholar
  55. 55.
    J. Weertman and J. R. Weertman in “Physical Metallurgy”, edited by R. W. Cahn (North-Holland Publishing Co., Amsterdam, 1965) p. 793.Google Scholar
  56. 56.
    J. Weertman, Trans. ASM 61 (1968) 681.Google Scholar
  57. 57.
    C. R. Barrett and W. D. Nix, Acta Met. 13 (1965) 1247.Google Scholar
  58. 58.
    F. R. N. Nabarro, Phil. Mag. 16 (1967) 231.Google Scholar
  59. 59.
    O. D. Sherby, T. A. Trozero, and J. E. Dorn, Proc. ASTM 56 (1956) 789.Google Scholar
  60. 60.
    B. Y. Chirouze, D. M. Schwartz, and J. E. Dorn, Trans. ASM 60 (1967) 51.Google Scholar
  61. 61.
    D. R. Cropper and T. G. Langdon, Phil. Mag. 18 (1968) 1181.Google Scholar
  62. 62.
    W. G. Johnston and J. J. Gilman, J. Appl. Phys. 30 (1959) 129.Google Scholar
  63. 63.
    D. F. Stein and J. R. Low Jr., ibid 31 (1960) 362.Google Scholar
  64. 64.
    H. W. Schadler, Acta Met. 12 (1964) 861.Google Scholar
  65. 65.
    H. D. Guberman, ibid 16 (1968) 713.Google Scholar
  66. 66.
    W. G. Johnston and D. F. Stein, ibid 11 (1963) 317.Google Scholar
  67. 67.
    J. C. M. Li, Can. J. Phys. 45 (1967) 493.Google Scholar
  68. 68.
    R. L. Fleischer, J. Appl. Phys. 33 (1962) 3504.Google Scholar
  69. 69.
    J. C. M. Li, Trans. TMS-AIME 227 (1963) 1474.Google Scholar
  70. 70.
    B. B. Rath and H. Hu, ibid 245 (1969) 1577.Google Scholar
  71. 71.
    J. C. M. Li, ibid 245 (1969) 1591.Google Scholar
  72. 72.
    Idem, Trans. ASM 61 (1968) 699.Google Scholar
  73. 73.
    J. Weertman, Trans. TMS-AIME 233 (1965) 2069.Google Scholar
  74. 74.
    Idem, Acta Met. 15 (1967) 1081.Google Scholar
  75. 75.
    A. H. Cottrell, “Dislocations and Mechanical Properties of Crystals”, edited by J. C. Fisher et al (Wiley, New York, 1957) p. 509.Google Scholar
  76. 76.
    G. B. Gibbs, Scripta Met. 1 (1967) 135.Google Scholar
  77. 77.
    W. D. Nix, Acta Met. 15 (1967) 1079.Google Scholar
  78. 78.
    J. J. Holmes, ibid 15 (1967) 570.Google Scholar
  79. 79.
    P. Chaudhari, Scripta Met. 1 (1967) 145.Google Scholar
  80. 80.
    W. D. Nix, ibid 1 (1967) 171.Google Scholar
  81. 81.
    R. Chang, J. Appl. Phys. 33 (1962) 858.Google Scholar
  82. 82.
    D. W. Lee and J. S. Haggerty, J. Amer. Cer. Soc. 52 (1969) 641.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1970

Authors and Affiliations

  • N. Balasubramanian
    • 1
  • J. C. M. Li
    • 2
  1. 1.Henry Krumb School of MinesColumbia UniversityNew YorkUSA
  2. 2.E. C. Bain Laboratory for Fundamental ResearchUS Steel CorporationMonroevilleUSA

Personalised recommendations