Skip to main content
Log in

A lattice parameter method for the investigation of solid state precipitation

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Over strictly limited composition ranges, the relationship between lattice parameter and solid solution composition can often be taken as linear even in multicomponent solid solution systems. The constants in the assumed linear equations relating the lattice parameter to the atomic percentage of each component may be calculated from lattice parameters measured for solution heat-treated alloys of known compositions. The subsequent changes in lattice parameters which occur during ageing of these alloys are shown to yield useful information about composition changes and the precipitate phases which occur during ageing. In particular, if the composition of the precipitate is known, then the linear equations may be used to calculate the composition of the remaining solid solution alloys. Even if both the composition of the precipitate phase and the remaining solid solution are unknown, changes in lattice parameter, combined with known lattice parameter versus composition functions, may be used to determine what average precipitate compositions are not allowed. These methods are illustrated in the case of Al-Cu, Cu-Ni-Al and Cu-Zn-Ni-Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Vegard, Z. Physik, 5 (1921) 17.

    Google Scholar 

  2. H. W. King, J. Mater. Sci. 1 (1966) 79.

    Google Scholar 

  3. C. S. Barrett, “Structure of Metals”, 2nd ed. (McGraw-Hill, Maidenhead, 1952) 229.

    Google Scholar 

  4. H. W. King, in “Alloying Behaviour and Effects in Concentrated Solid Solutions”, ed. by T. B. Massalski (Gordon and Breach, New York, 1965) 85.

    Google Scholar 

  5. E. Schmid and C. Wasserman, Metallwirt. 7 (1928) 1329.

    Google Scholar 

  6. W. L. Fink and D. W. Smith, Trans. AIME 122 (1936) 284.

    Google Scholar 

  7. E. C. Ellwood and J. M. Silcock, J. Inst. Metals, 74 (1948) 457. See also E. C. Ellwood, ibid 74 (1948) 721.

    Google Scholar 

  8. H. J. Axon and W. Hume-Rothery, Proc. Roy. Soc. (London) A193 (1948) 1.

    Google Scholar 

  9. J. E. Dorn, P. Pietrokowsky, and T. E. Tietz, J. Metals 2 (1950) 933.

    Google Scholar 

  10. A. Phillips and R. M. Brick, Trans. AIME 111 (1934) 94.

    Google Scholar 

  11. Idem, J. Franklin Inst. 125 (1933) 557.

    Google Scholar 

  12. W. Stenzel and J. Weerts, Metallwirt. 12 (1933) 343, 369.

    Google Scholar 

  13. E. H. Dix and H. H. Richardson, Trans. AIME 73 (1926) 560.

    Google Scholar 

  14. H. W. King, J. Mater. Sci. 6 (1971) 1157.

    Google Scholar 

  15. W. B. Pearson “A Handbook of Lattice Spacings and Structures of Metals and Alloys”, Vol. I. (Pergamon Press, London, 1958) 311.

    Google Scholar 

  16. V. Gridnev, Metallurg. (Leningrad) 4/5 (1939) 13.

    Google Scholar 

  17. F. H. Cocks and W. S. Radzinski, Mater. Sci. Eng. 7 (1971) 302.

    Google Scholar 

  18. F. B. Hildebrand, “Methods of Applied Mathematics” (Prentice-Hall, Englewood Cliffs, N. J., 1952).

    Google Scholar 

  19. E. A. Owen and L. Pickup, Z. Kristallogr. A88 (1934) 116.

    Google Scholar 

  20. B. R. Coles, J. Inst. Metals 84 (1956) 346.

    Google Scholar 

  21. J. Obinata and G. Wasserman, Naturwiss. 21 (1933) 382.

    Google Scholar 

  22. F. H. Cocks, “Strengthening of Brasses by Precipitation”, Proceedings of the Second International Conference on the Strength of Metals and Alloys Vol. 2 (Amer. Soc. Metals, Metals Park, Ohio, 1970), 631.

    Google Scholar 

  23. A. J. Bradley and J. Lipson, Proc. Roy. Soc (London) A167 (1938) 421.

    Google Scholar 

  24. W. O. Alexander, J. Inst. Metals 63 (1938) 163.

    Google Scholar 

  25. G. B. Thomas, Jun. “Calculus and Analytic Geometry” (Addison-Wesley Reading, Mass., 1953) 583.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocks, F.H. A lattice parameter method for the investigation of solid state precipitation. J Mater Sci 7, 771–780 (1972). https://doi.org/10.1007/BF00549905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549905

Keywords

Navigation